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Water and Energy are InterdependentWater and Energy are Interdependent

• Thermoelectric   
cooling

• Hydropower

• Fuel Production 
(fossil fuels, H2, 
biofuels)

• Emission control

• CO2 separation    
and sequestration              

• Pumping

• Conveyance 

• Treatment

Dr. Michael Hightower, Sandia 
National Labs, 2010

Energy  and power 
production require water (only 
agriculture uses more):

Water production, 
processing, distribution, 

& end-use require energy

2

4% of US 
electrical power
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Why are materials advances are needed 
in water purification?
 Increase supplies efficiently at low cost
Remove micropollutants
Disinfect without creating dangerous 

byproducts
 Two examples of materials research
Separate with membranes 
Sense with DNA enzymes
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Using Saline WatersUsing Saline Waters

 Current methods are prone to fouling, scaling, and 
cost a lot to operate, needing lots of maintenance 
and trained workers

 Inland salt waters are full of hard salts, and 
disposal of brine is expensive.

 However, new methods are being developed to 
reduce all these problems, making certain saline 
source water relatively inexpensive to recover.

 Current methods to remove salt from water 
(desalinate) need large amounts of capital, energy, 
and chemicals.
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Cross-FlowFeed Water

Active Layer
(~100 nm thick)

Asymmetric 
membranes: Current 
state of RO art, first 

developed in the 
1960’s and 1970’s

Flux

Permeate

Desalination by Reverse OsmosisDesalination by Reverse Osmosis
RO has been around a long time, works well, 

but much more can be done.

http://www.cdoci.com.cn

Typical flow rate is 10 m/s
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Research Needs for Reverse OsmosisResearch Needs for Reverse Osmosis

 Poor rejection of 
neutral, molecular 
contaminants 

 Biological fouling
 Poor chemical 

stability to chlorine
 Disposal of 

concentrated brine

Shannon et al. Nature (2008) (Concentration polarization is not to scale)
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www.mtrinc.com

Reverse osmosis plant at 
Bandar Imam, Iran 
www.water-technology.net

Needs lots of area:
1 million gallon/day 
requires one football 
field of membrane. 
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Thermodynamic limit of sea water 
desalination
Thermodynamic limit of sea water 
desalination

8

 For 50% recovery, ideal solution, 3.5% by 
mass NaCl (V0 = 2 m3 to recover 1 m3 pure 
water)

 No process can do better than this at 50% 
recovery. (For 0% recovery, no ln(2) term.)

 State-of-the-art RO is only a factor of 2 higher 
than this limit.

0 ln(2)
3.8 MJ  1 kWh

BW nV k T
W


 



Almost no microscopic understanding of transport 
in interfacially polymerized membranes

Real-world “nanotechnology”: active layer is only 
100 nm thick

COCl

COClCOCl

Porous polysulfone

NH2NH2

Organic solvent 
+ acyl halide 

phase

Water + 
amine phase

Polyamide 
~100 nm

500 nm



Use “Rutherford backscattering spectroscopy” as a tool 
for analytical chemistry on a 100 nm polymer layer

100 nm

Layer 2: C27H22O4S

Layer 1: C18H12O3N3

FT30 reverse 
osmosis 
membrane, 
Dow Liquid 
Separations



analityca.blogspot.com

Same physics that Rutherford used to reveal the 
structure of the atom in 1910

2 MeV He ion accelerator at U. Illinois
Materials Research Laboratory



Incomplete polymerization produces charged 
functional groups—label RCOO- with Ba++ and Ag+



Think of this as a titration on 100 nm of membrane

Ag+

Ba++
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Active areas of
“high-risk/high payoff” research

Active areas of
“high-risk/high payoff” research

Forward Osmosis Carbon Nanotubes Biomimetics 14



The Ammonia-Carbon Dioxide Forward 
Osmosis Desalination Process

Energy
Input preferably 
from waste heat

Schiermeier Nature (2008)
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Advances in membrane materials could have 
large impact in many areas of water-energy

Advances in membrane materials could have 
large impact in many areas of water-energy
 Treat non-conventional sources for cooling water to 

reduce scaling, and remove organics that aggravate 
biofouling.

 Treat produced water generated by fossil fuel 
recovery to reduce environmental impact.

 Membranes for bioreactors (aerobic and anaerobic) 
that minimize biofouling.

 Treat non-conventional sources for cooling water to 
reduce scaling, and remove organics that aggravate 
biofouling.

 Treat produced water generated by fossil fuel 
recovery to reduce environmental impact.

 Membranes for bioreactors (aerobic and anaerobic) 
that minimize biofouling.

Shannon et al. Nature (2008)
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Savings in energy possible in treatment of 
source and waste waters

Savings in energy possible in treatment of 
source and waste waters

 U.S. ensures water safety by brute force:  High 
pressures to prevent contamination from sewage, 
and high residuals of chemical disinfectants. Huge 
leakage.

 Downstream water quality impaired by treatment 
itself.  Salts and disinfection byproducts

 New point-of-source, use, and discharge systems 
can mitigate these issues.
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leakage.

 Downstream water quality impaired by treatment 
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Disinfection of Hard to Treat Pathogens, 
Without Intensive Chemical Treatment

Cryptosporidium 
parvum

Mycobacterium 
avium

Adenoviruses

Benito Mariñas, UIUC

 Disinfect water WITHOUT 
using chlorine or other 
powerful oxidants that can 
themselves form toxic 
compounds

 Use of materials to trap 
pathogens, including viruses

 Use particles, catalysts, and 
photocatalysts with plentiful, 
free light to inactivate 
pathogens in water

http://nobelprize.org/
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Robust Sensing of Contaminants in Real Time
Could be a Game Changer 

Robust Sensing of Contaminants in Real Time
Could be a Game Changer 

 High cost in treating all waters all  the time, when need 
may be much less.

 Most sensing today done in batch mode and sent to lab 
periodically: Difficulties in getting reliable results.

 ppb levels of toxic compounds are hard to sense in a high 
background of organics.

 Need to detect pathogens, including viruses.
 Fouling stops even simple sensors from  working after a 

relatively short time.
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DNAzymes for Highly Selective Heavy 
Sensing of Heavy Metals

DNAzymes for Highly Selective Heavy 
Sensing of Heavy Metals

http://montypython.scs.uiuc.edu
Wang et al., Adv. Mat. (2008)
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Real time water testing “Powered by DNA”

21

ANDalyze, Inc.ANDalyze, Inc.
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Some final thoughts…Some final thoughts…

Water purification is an incredibly 
important problem that is underserved by 
the scientific community
Many opportunities across disciplines; we 

need everyone’s talents.
Materials, transport physics, engineering
Polymer chemistry, molecular biology
Microbial ecology, virology, toxicology


