UNIVERSITY OF ILLINOIS
AT URBANA-CHAMPAIGN

Coupling of heat and spin currents in metallic multilayers

David G. Cahill and Gyungmin Choi Department of Materials Science and Engineering University of Illinois at Urbana-Champaign

Thanks to Byoung-Chul Min and Kyung-Jin Lee (Spin Convergence Research Center, Korea Institute of Science and Technology) for initial samples, spinidiffusion and magnetization dynamics modeling

illinois.edChoi et al., Nature Communications (2014)

Motivation I: Can we make use of spin in heat engines?

- Electronic states enumerated by energy, wave-vector, spin
- Possible advantages in geometrical scaling, $\nabla E \perp \nabla T$.

Kirihara et al., Nat. Mat. (2013)

Boona, Myers, Heremans, *Energy and Env. Sci.* (2014)

Motivation II: Can we make use of heat currents in information technology?

- Big picture problem: "How can we write magnetic information without resorting to magnetic fields, e.g., with spin currents?"
 - Rapid changes in magnetization and strong temperature gradients in magnetic materials should produce spin currents.
 - Magnitudes of the effects are only beginning to be understood.
- Why now and why pump-probe?
 - Leveraging rapidly advancing tools and growing knowledge base for heat transport in nanoscale metallic structures.
 - Create huge heat fluxes 100 GW m⁻² K⁻¹ and detect spin current in real time with 1 ps time resolution.

Time-resolved magneto-optic Kerr effect (TR-MOKE) to measure magnetization and spin accumulation

Kerr rotation

Faraday rotation

http://labfiz.uwb.edu.pl

Körmann et al., PRB (2011)

Time-resolved magneto-optic Kerr effect (TR-MOKE) to measure magnetization and spin accumulation

Two types of samples: i) for spin accumulation; and ii) for spin-transfer torque

Sapphire/Pt(30)/[Co/Pt] $_{xn}$ (6)/Cu(80)/MgO(10)/AlOx(5) (in nm)

Sapphire/Pt(30)/[Co/Pt] $_{xn}$ (6)/Cu(10)/CoFeB(2)/MgO(10)/AlOx(5) (in nm)

Pump Pt-side, probe either Pt-side or Cu side by either TDTR or TR-MOKE

Normalized Kerr signal from Co/Pt is independent of Cu thickness

Use thicker Cu layers to isolate contribution from spin-polarization in Cu

Comparison between experiment and spin diffusion model using spin generation = dM/dt

Measured Kerr signal on Cu side

Spin diffusion model

Spin diffusion model

$$\frac{\partial \mu_{\rm S}}{\partial t} = D \frac{\partial^2 \mu_{\rm S}}{\partial^2 z} - \frac{\mu_{\rm S}}{\tau_{\rm S}}$$

spin generation rate per unit volume

$$G_S = -\frac{dM}{dt}$$

 $\mu_{\rm S} = \mu_{\uparrow} - \mu_{\downarrow}$ is the spin chemical potential

D is the spin diffusion constant

 $\tau_{\rm S}$ is the spin relaxation time.

	Pt	[Co/Pt]	Cu
D (nm²/ps)	200	100	6500
$\tau_{\rm s}$ (ps)	0.5	0.05	25
$(D\tau_{s})^{1/2} (nm)$	10	2.2	400

Comparison between experiment and spin diffusion model using spin generation = dM/dt

Measured Kerr signal on Cu side

Spin diffusion model $F=17 \text{ J m}^{-2}$

- No prior studies of how to convert Kerr rotation to spin accumulation.
- Working in progress to relate Kerr rotation quantitatively to spin accumulation in Cu and Au.

Temperature gradient also contributes to spin accumulation

$$J_{S} = -\frac{\mu_{B}}{e} \left(\sigma_{\uparrow} S_{\uparrow} - \sigma_{\downarrow} S_{\downarrow}\right) \nabla T = -\frac{\mu_{B}}{e} \frac{\sigma_{\uparrow} S_{\uparrow} - \sigma_{\downarrow} S_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}} \sigma \nabla T$$

Temperature gradient in the Pt/Co layer from thermal modeling

Calculated spin accumulations

Spin diffusion modeling including spin-dependent Seebeck effect

Spin chemical potential

$$\mu_S = \mu_{\uparrow} - \mu_{\downarrow} = A \exp\left(\frac{x}{l_S}\right) - A \exp\left(-\frac{x}{l_S}\right)$$

Spin current for

$$\begin{split} \left|x\right| > l_{s} \\ \frac{d\mu_{s}}{dx} = \frac{A}{l_{s}} \exp\left(\frac{x}{l_{s}}\right) + \frac{A}{l_{s}} \exp\left(-\frac{x}{l_{s}}\right) \approx \frac{1}{l_{s}} \mu_{s} \\ J_{s} = J_{\uparrow} - J_{\downarrow} = \Lambda_{s} \frac{d\mu_{s}}{dx} \qquad \Lambda_{s} = \text{spin conductivity} \end{split}$$

Simple relationship between chemical potential and current

$$\mu_{S} = \frac{l_{S}}{\Lambda_{S}} J_{S}$$

Temperature gradient also contributes to spin accumulation

- More refined data with comparison to spin diffusion model including the spin-dependent Seebeck effect
- Comparison between model and data gives

$$\frac{\Delta \theta_K}{\Delta M} \bigg|_{Cu} \approx 8.5 \times 10^{-10} \text{ rad m A}^{-1}$$

Use an in-plane magnetic layer of CoFeB as a "ballistic pendulum" for the spin current

- Spin current kicks magnetization of CoFeB out-ofplane (spin torque) and induces precession.
- Amplitude of the precession can be calibrated using Kerr rotation in a static field perpendicular field.

Precession frequency is well-described by Kittel equation

Combine spin diffusion model with magnetization dynamics

- Spin current has transverse polarization with respect to CoFeB magnetization, therefore, CoFeB is a perfect sink for spin (spin chemical potential is zero at Cu/CoFeB interface)
- Cu layer is thin, therefore, we need to include finite spin conductance at the [Co/Pt]/Cu and Cu/CoFeB interfaces
 - longitudinal spin conductance $\frac{G_{\uparrow} + G_{\downarrow}}{2e^2} \approx 0.4 \times 10^{15} \ \Omega^{-1} \ \text{m}^{-2}$
 - transverse spin conductance $\frac{\text{Re}\left\{G_{\uparrow\downarrow}\right\}}{e^2} \approx 0.6\text{x}10^{15} \ \Omega^{-1} \ \text{m}^{-2}$

Good agreement between predicted and measured amplitude of spin precession

Landau-Lifshitz-Gilbert equation

$$\dot{m} = -\gamma \, m \times H_{eff} + \alpha \, m \times \dot{m} + \frac{J_S}{M_S h} \, m \times \left(m \times m_{fixed} \right)$$

Summary

- Picosecond demagnetization of [Co/Pt] multilayer produces spin-currents that can exert a spin-transfer torque on a inplane magnetic layer or produce spin accumulation in Cu
 - 6% of loss of demagnetization of [Co/Pt] magnetization is transferred to CoFeB layer
 - Increase efficiency with [Co/Pd] or [Co/Ni] with longer spin diffusion length?
- Coefficient for converting Kerr rotation to spin accumulation in Cu is 0.85 nm A⁻¹
 - Initial experiments on Au suggest that the detection sensitivity t is a factor of 5 larger than Cu
- Experiments and modeling give a spin-dependent Seebeck effect in [Co/Pt] of ≈5 μV K⁻¹
 - Will a tunnel barrier produce a larger effect?