Surface Thermodynamics A primer for heat transfer physical scientists

David Cahill

Department of Materials Science and Engineering, Materials Research Laboratory, University of Illinois at Urbana-Champaign

Partially based on lecture notes by Prof. Gert Ehrlich

Motivation for understanding thermodynamics of surfaces

- At the nanoscale, atoms and molecules near surfaces and interfaces become a significant fraction of the overall system.
- In this lecture, I will use the term "surface" to describe the transition region between two phases.
- Gibbs (1878) introduced the concept of a "dividing surface" to deal with the thermodynamics of this (often inhomogenous) transition region.
 - See Tolman, J. Chem. Phys. 16, 758 (1948)

Motivation for understanding thermodynamics of surfaces

- We need thermodynamics to provide insight on
 - Composition and structure of the surface in equilibrium.
 - Driving force for exchange of mass at the surface (evaporation, condensation, adsorption, ripening, coarsening).

Part I: classical thermodynamics of surfaces

- Surface excess contributions to the extensive variables
 - Gibbs adsorption equation
- Thermodynamic potentials and surface excess free energy
 - Landau thermodynamic potential for multicomponent systems
 - Surface tension, surface energy, surface stress
- Equilibrium shape; Laplace pressure; thermodynamic driving force for coarsening

Part II: statistical mechanics of surfaces

- Landau thermodynamic potential and the grand partition function
 - Equilibrium between 2D and 3D ideal gases
 - Equilibrium between monolayer lattice gas and 3D ideal gas (Langmuir adsorption)
- Comparison to kinetic models for evaporation and condensation
- Connection back to thermodynamics: heat of adsorption

Surface excess of the extensive variables

Surface excess of the extensive variables

Surface excess of the extensive variables

Relate surface tension to the other intensive variables

Gibbs adsorption equation

Surface excess free energy

Digression on thermodynamic potentials

closed, isothermal closed, isothermal, constant P

closed, adiabatic

open, isothermal

Difficult to measure the surface tension of a solid

- Need an experiment that can access the reversible mechanical work needed to create new surface
- Zero creep experiment

Surface tension, surface energy, surface stress

• I usually reserve the term "surface energy" for the surface tension at zero temperature.

Surface stress is the work needed to deform a surface

Equilibrium shape

Equilibrium shape: Wulff construction

Equilibrium shape of most metals is nearly a sphere

- Need sufficient kinetics (large surface diffusion or fast evaporation/condensation) to observe equilibrium shape
- Most crystal shapes are, in practice, controlled by kinetic limitations (slowest growing facets), not thermodynamics.

Equilibrium between a small crystal and its liquid or vapor

Equilibrium between a small crystal and its liquid or vapor

Equilibrium between a small crystal and its liquid or vapor

Chemical potential of a small crystal

Chemical potential driving force for ripening

Chemical potential driving force for ripening

Part 2: statistical mechanics to calculate L

$$L = -k_B T \ln Z$$

$$grand parlish function$$

$$|Z = \sum exp(NullegT) Z(N)$$

$$Parlish Z(N) = \sum exp(-E; MyJ/k_BT)$$

$$(F = -k_B T \ln Z(N, V, T)) \quad \text{cononical} \quad \text{ensemble}$$

$$S = k_B \ln T(N, V, E) \quad \text{cononical} \quad \text{ensemble}$$

$$S = k_B \ln T(N, V, E) \quad \text{cononical} \quad \text{ensemble}$$

$$description Quantity of the property of the semble of t$$

Ideal gas is always the easiest place to start

$$Z(N) = \int_{N/2}^{N} when Z(1) = \int_{N/2}^{N} (T, V)$$

We'll need to know J evenly by let's pat that old for a while

 $Z = \sum_{N/2}^{N} \exp\left(\frac{NM_{ko}T}{N}\right)^{N} = \sum_{N/2}^{N} \left[\frac{Jep(M/koT)}{N}\right]^{N} = \sum_{N/2}^{N} \left[\frac{Jep(M/koT)}{N}\right]^{N} + \sum_{N/2}^{N}$

Need the derivative of L with respect to chemical potential to find $N = N^{(2)} + N^{(s)}$

dl =
$$-SAT - PAV + SAA - NdyA$$

let assume the Substitution in the so

we will let N a refer to the adsorbate

 $N = -\frac{\partial L}{\partial A} = k_0 T = \frac{\partial Z}{\partial A}$
 $N = k_0 T = \frac{\partial X}{\partial A} = \int_{C} exp(A/k_0 T)$
 $\frac{dA}{k_0 T} = \frac{A}{N} = \frac{N}{S}$

Single particle partition functions

2D ideal gas in equilibrium with 3D ideal gas

Perpendicular vibrational partition function

Compare to a kinetic view of condensation = evaporation

ZD, del gas adsorption
$$kT < \hbar \omega$$

$$\frac{P}{\sqrt{2\pi}mkT} = \frac{N^{(S)}k_{S}T}{\Lambda} \exp\left(-\frac{\epsilon_{S}}{h}\right)$$
At room $T = \frac{k_{B}T}{h} = 6 \times 10^{12} \text{ s}^{-1}$

This looks like an impingement rate set equal to an evaporation rate but note that we derived the equation without considering kinetics.

Lattice 2D gas (Langmuir adsorption)

Lattice 2D gas (Langmuir adsorption)

Lattice 2D gas (Langmuir adsorption)

Equlibrium between 2D lattice gas and 3D ideal gas

Equilibrium between 2D lattice gas and 3D ideal gas

Single particle partition function for the 2D lattice gas

Comparison to a kinetic view of adsorption/desorption

Compare 2D ideal gas and 2D lattice gas

Entropy is (of course) important for determining the equilibrium coverage

Take a closer look at the entropy of the lattice gas

Take a closer look at the entropy of the lattice gas

Take a closer look at the entropy of the lattice gas

Compare to entropy of the ideal gas

Ar at atmospheric pressure
$$\frac{S_{gas}}{Nk_B} \approx 15$$

Heat of adsorption of the 2D ideal gas

