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Outline

• Measurement: Modulated time-domain 
thermoreflectance (TDTR)

• Thermal conductivity: Phase change materials and 
the minimum thermal conductivity.

• Thermal conductance of interfaces with electrodes:
Interfaces between highly dissimilar materials and 
anharmonic phonon transport.

• Controlling thermal conductance with thin interfacial 
layers: C60 films (demonstrated); disordered layered 
crystals WSe2 (proposed).



Modulated pump-probe apparatus

f=10 MHz

rf lock-in



IPM system built January 7-8, 2008  



Time-domain Thermoreflectance (TDTR) 
data for  TiN/SiO2/Si

• reflectivity of a metal 
depends on 
temperature

• one free parameter: 
the “effective”
thermal conductivity 
of the thermally 
grown SiO2 layer 
(interfaces not 
modeled separately)

SiO2

TiN

Si



thermal conductivity map of 
cross-section of thermal barrier 
coating, with J.-C. Zhao (GE)

Flexible, convenient, and accurate technique...

• ...with 3 micron resolution



Ge2Sb2Te5 during temperature ramp

• Low conductivity in the cubic-phase (comparable 
to predicted Λmin) increases modestly with 
annealing. 



Cubic Ge2Sb2Te5 formed by nsec laser pulse

• 523 nm, Q-switched doubled-YAG laser



Minimum thermal conductivity

• Both amorphous and “early” cubic phase have 
thermal conductivities comparable to the 
predicted minimum conductivity based on atomic 
density n and speeds of sound v.

• vl measured directly by picosecond acoustics

• Assume vt = 0.6 vl

High T limit



Thermal conductivity and interface thermal conductance

• Thermal conductance (per unit area) G is a 
property of an interface

• Thermal conductivity Λ is a property of the 
continuum



Interface thermal conductance between GST 
and electrodes
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 : vibrational cutoff frequency of material A
( 1.8 THz for Bi, 2.23 THz for Pb)
v    : Debye velocity of material B

• Difficult to measure because thermal 
conductivities are small and, for c-GST, 
depends on thickness; see Reifenberg et al. 
(2007) and Lee et al. (2000).

• And hard to predict because analytical models 
do not include anharmonicity or details of the 
interface structure and bonding.

• high temperature limit of the radiation limit
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R. J. Stoner and H. J. Maris, Phys.Rev.B 48, 22, 16373 (1993)



Room temperature thermal conductance 

• Pb and Bi show similar 
behavior.  Electron-
phonon coupling is not 
an important channel.

• Weak dependence on 
Debye velocity of the 
substrate.

• For Pb and Bi, 
conductance always 
larger than predicted 
by a purely elastic 
process.



Interface thermal conductance: Factor of 60 range at 
room temperature

L = Λ/G
Λ = 1 W m-1 K-1

a-GST/ZnS:SiO2 Lee et al. (2000)



Bottom line…

• Thermal conductance of Ge2Sb2Te5 /nitride 
interfaces is not known precisely. Limited data and 
analogy to Pb interfaces suggests G ≈25 MW m-2 K-1

at room temperature.

• Kapitza length L = Λ/G ≈10 nm for a-Ge2Sb2Te5

• Not yet measured but G will probably increase 
significantly with temperature.

• For liquid (metallic) Ge2Sb2Te5, conductance will 
become large because of electronic thermal 
transport.



C60 fullerene as thermal insulation

• Evaporate C60 on TiN or TiAlN 
back-electrode contacts

• Add Ge2Sb2Te5 layer (or not)

• Coat with Al for thermal 
transport measurements by 
time-domain thermoreflectance



C60 fullerene as thermal insulation

Al/C60/TiNAl/C60/TiAlN

Al/c-GST/C60/TiN

C60

Al

TiN or TiAlN

C60

GST
Al

TiN or TiAlN

Fit gives interface 
conductance and 
conductivity of C60

G=13 MW m-2 K-1

Λ = 0.13 W m-1 K-1

Al/c-GST/C60/TiAlN



Layered disordered crystals: WSe2 by 
“modulated elemental reactants”

• Deposit W and Se 
layers at room 
temperature on Si 
substrates

• Anneal to remove 
excess Se and 
improve crystallinity

• Characterize by RBS, 
x-ray diffraction (lab 
sources and Advanced 
Photon Source) and 
TEM

David Johnson group, U. Oregon



Cross-sectional TEM of 60 nm thick WSe2

Seongwon Kim and Jian Min Zuo



Thermal conductivity of WSe2

• 60 nm film has the lowest 
thermal conductivity ever 
observed in a fully dense 
solid. Only twice the thermal 
conductivity of air.

• A factor of 6 less than the 
calculated amorphous limit 
for this material.

Chiritescu et al. Science (2006)



Conclusions

• Thermal conductivity of amorphous and “early”
cubic phase and laser crystallized cubic phase are 
all comparable to the predicted minimum thermal 
conductivity strong disorder in the crystal

• Thermal conductance of interfaces with nitride 
electrodes is equivalent to ≈10 nm thick layer of 
amorphous GST, decreases with thickness.

• C60 layer provides thermal resistance equivalent to 
≈20 nm thick layer of amorphous GST

• Could, in principle produce the same thermal 
resistance with a 5 nm thick layer of a disordered 
layered crystal such as WSe2.
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