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e Distribution of phonon mean-free-paths and
nanostructure effects on thermal conductivity.

e Thermal conductivity of nanostructured materials

- GaN/AIN and oxide superlattices
- PbSe/PbTe nanodot superlattices
- rough Si nanowires

e Bottom line: not difficult for nanostructuring to
make bad thermoelectrics into mediocre
thermoelectrics, but difficult to significantly improve
good thermoelectrics



Reduce lattice thermal conductivity without

(significantly) reducing charge-carrier mobility
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Heat is carried by phonons with a broad distribution

of mean-free-paths

e Thermal conductivity is an integral property:
difficult to understand and control.

e Simplest case of thermal conductivity where
resistive scattering dominates.
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c(w) = heat capacity of phonon mode
Vy(®) = phonon group velocity
1(w) = scattering time

o. = cut-off frequency



Make a “"Klemens-like” calculation

e Assume linear dispersion for e<eo, and 77! o w?T
A [we A
A=Z [ dw=Sw.
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e Convert to an integral over mean-free-patl | — ?T
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(. is the mean-free-path at the cut-off frequency
(.. 1S the maximum mean-free-path that contributes to A




Heat is carried by phonons with a broad distribution

of mean-free-paths

e Phonon scattering by
charge carriers or
boundaries will narrow
the distribution.

e Alloying and point
defects will broaden the
distribution.

e Relaxational damping
will eventually be a
limiting factor.

e Details are probably
important (scattering
rates, normal processes,
dispersion...)
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Summary of nanostructure effects

nanowires frequency
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F=volume fraction, r=radius
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Time domain thermoreflectance since 2003

Spectrum
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e Improved optical design ey S -

e Normalization by out-of- ]
phase signal eliminates optical solator

artifacts, in_creases dynamic _ Emm" Y o
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sensitivity < ¥ colr
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arbitrary layered geometries

e One-laser/two-color
approach tolerates diffuse
scattering

Clone built at Fraunhofer Institute for
Physical Measurement, Jan. 7-8 2008




AIN/GaN superlattices

e Strained AIN 4 nm

e Vary GaN thickness 2 <
heoy < 1000 Nm ®

e Data suggest that long ~
wave-length end of

phonon distribution is <

not diffusively scattered

e No evidence of coherent
phonon scattering (e.qg.,
minimum created by
reduction in group
velocity)
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Collaboration with D. Jena, Koh et al., Adv. Funct. Mater. (2009)



Work in progress: short period perovskite

superlattices and RP phases.

e No evidence (yet) of coherent phonon scattering (e.g.,
minimum created by reduction in group velocity)

Collaboration with Mark Zurbuchen (UCLA) and D. Schlom’s group (Cornell)
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Progress in increasing figure of merit ZT

Bi,Te;/Sh,Te; SL — Venkatasubramanian et. al. Nature (2001)
PbSeTe NDSL —Harman et. al. Science (2002) ¢

2 . 5 '| Si NW - Hochbaum et. al. Nature (2008)

. N _ty pe BiSbTe — Poudel et. al. Science (2008)

Ag,TITe; - Kurosaki et. al. APL (2005)

2 : 0 i - p_type I In,Se, Rhyee et. al. Nature (2009)

TI-PbTe — Heremans et. al. Science (2008)
CSBidTeE Chung et. al. Science (20(])) BaBGa1BGe3I] - Saramat et. al. JAP (2006)

1 . 5 1 Bi,Te; Goldsmid et. al. Br. JAP (1954) SiGe - Wang et. al. APL (2008)
— Bi,Te, Goldsmid et. al. Br. JAP (1958)
N

PbTe QW — Harman et. al. JEM (1996)

Vineis et al., Adv. Mater. (2009) <e®



/ZT=1.6 reported for PbTe/PbSe nanodot

superlattices (NDSL) thermoelectric materials

e Power factor is not enhanced so lattice
thermal conductivity is assumed to be very
small

e Limited data for thermal conductivity

e Use TDTR to measure the total thermal
conductivity in the top ~0.5-pm of a large
number of ~5-pm-thick NDSL samples grown
at MIT/Lincoln-Lab

e In-plane electrical measurements
(conductivity, Hall) give estimate of electrical
thermal conductivity, A, =A_ ., —A

e Assume that anisotropy is “not too strong”

total elec



NDSL and superlattice PbTe do not

significantly beat the alloy limit
e nanostructured (open symbols); random alloys (filled
symbols);

e Rayleigh scattering strength I" calculated for random
alloy (no nanodots)
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Need high densities of

precipitates to make a
difference at high temperatures

)

e Reduction of NaCl:AgCl
mixed crystal in K vapor at
600 °C.

e Ag particle radii r=15 nm

e Mean-free-path is €=40 ym
at the highest volume
fraction F=10-3

® CRYSTAL 1

NaCl
A CRYSTAL 5

NaCL+2.5x10"%COLLODAL SILVER
© CRYSTAL &

NACL+ 5x 1075 COLLOIDAL SILVER
O CRYSTAL 7

NaCLl+ 4 x10"*COLLODAL SLVER
A CRYSTAL 8

THERMAL CONDUCTIVITY (WATTS cM~! DEG™

3

e Reasonable agrggment with

expected

Worlock, PR 147, 636 (1966)
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New phonon physics in roughened nanowires?

Single Si nanowire measurements by Majumdar,
Yang, and co-workers (2008)
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@ Sample Process Flow for Si nanowire arrays
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@ Make use of high spatial resolution of TDTDR

e Ry N e D s A Penetration Depth at 10 MHz
in Spin-On Glass: ~50nm
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~100 nm diameter Si nanowires by metal-

assisted etching, Au and HF/H-,0,

e Post-fabrication roughening using Au sputtered
onto sidewalls and wet-chemistry

e Characterize roughness by TEM




~100 nm diameter Si nanowires by metal-

assisted etching, Au and HF/H-,0,
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e The $64k question: are
we witnessing new
physics or do the etched
harbor defects that are
not apparent by TEM.
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e TEM is typically great for - 20r 5 |
extended defects but not e
that sensitive to point 10 *® 7 -
defects or clusters of
point defects. % T 2 3 4

Roughness (nm)

Feser et al., submitted



Raman peak broadens with etching time

e Consequence of roughness (e.g., inhomogeneous
strain fields, confinement) or does etching inject

defects?
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Defects happen...

e Not the same, of course, but extensive damage from
dry etching of Si was not expected either

Dry Etching Damage of Silicon: A Review
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Conclusions

e Superlattice interfaces can be used to reduce thermal
conductivity but lowest conductivity is typically above the
amorphous limit. Even the best superlattice interfaces are
diffuse to most thermal phonons at room temperature.

e PbSe nanodots are not very effective in lowering the thermal
conductivity of PbTe. Essentially the same thermal
conductivity is observed in alloys with the same average
composition. This can be understood based on strong
anharmonicity and short intrinsic phonon mean-free-paths in
of PbTe.

e Jury is still out on the question of new physics in rough
nanowires. But we can conclude that the low thermal
conductivities observed in single nanowire measurements are
not easy to reproduce. Does metal-assisted etching create
damage, e.qg., vacancy/hydrogen complexes or clusters?



