Lower and upper limits to the vibrational thermal conductivity of amorphous polymers and polymer salts

David G. Cahill

Xu Xie, Kexin Yang, Dongyao Li, Jungwoo Shin Tsung-Han Tsai, and Paul Braun

Department of Materials Science and Engineering Materials Research Laboratory University of Illinois at Urbana-Champaign

supported by AFOSR MURI

Outline

- Structure/property relationships for amorphous polymers. Search for...
 - High thermal conductivity. Increase the strength of interchain bonding; extension to ionomers
 - Low thermal conductivity. Introduce cagestructure side groups
- Explore thermal function in macromolecules
 - Thermal switching in liquid crystal networks.

Prior work on thermal conductivity and elastic constants of a glassy polymer, PMMA, in a SiC anvil cell

 Thermal conductivity doubles at a pressure of ≈5 GPA when the elastic modulus reaches C₁₁≈50 GPA

Stevens et al., J. Chem. Phys. 127 104906 (2007)

Hsieh et al, PRB (2011)

2015 report of anomalously high thermal conductivity in hydrogen-bonded polymer blends

- We were unable to reproduce this result. (PAP and PAA phase separate?)
- Continue the same basic idea: how much can we increase the thermal conductivity of an amorphous polymer by increasing the inter-chain bonding strength?

Kim et al., Nature Materials (2015)

Pump-probe measurements thermal properties and elastic constants

Measure thermal conductivity Λ and heat capacity C of thin films using time-domain thermoreflectance at multiple modulation frequencies f

- Sensitivities for 100 nm thick polymer layer on a Si substrate and coated with 90 nm of Al.
- Fit data acquired at f=1.6,
 4.1 and 9.1 MHz

Measure longitudinal sound velocity using conventional picosecond acoustics

Measure surface acoustic wave velocity using elastomeric phase shift mask

Li et al., J. Appl. Phys. (2013)

Experimental details: need to optimize thickness of sample and metal transducer

 Example sensitivity calculations for AI/PMMA(100nm)/Si

$$S = \frac{c_{44}}{v_{SAW}} \frac{\partial v_{SAW}}{\partial c_{44}}$$

 Approach fails if the Al transducer is too thin or if the PMMA layer is too thick.

Xie et al., Macromolecules (2016)

Study macromolecules with various interchain bonding types

Strong interaction

95% confidence intervals for Λ and C

0.9 8.0 0.7 **PVPCa PVPMg PVPLi** 0.6 **PAFe** 0.5 **PACu** Thermal Conductivity (W m-1 K-1) PANa 4 0.4 **PVSNa** PAA 0.3 PDDA **PMPC** 0.2 0.1 Heat capacity (J cm⁻³ K⁻¹)

Xie et al., Macromolecules (2016)

Elastic constants span an order of magnitude. Transition in Poisson ratio?

 Poisson ratio is v≈0.37 for polymers with small elastic constants and v≈0.25 for polymers with large elastic constants.

Model of minimum thermal conductivity predicts a correlation with average speed of sound

Make the comparison quantitative by introducing a density of vibrational states $n_c = (2/3)(n-n_H)$

Search for low thermal conductivity with cagestructured molecules

Fullerene derivatives have ultralow thermal conductivity

Multiply prediction by a factor α to take into account vibrational modes localized to the cage structure

 n_{eff} is calculated by treating each cage structure as 5/3 of an atom

Magnetic-field aligned photopolymerization of liquid crystal RM257 monomer

Shin et al., Macro Letters (2016)

Analyze order parameter from x-ray scattering data at APS

Shin et al., Macro Letters (2016)

High thermal conductivity state is lost at high temperature; large hysteresis on cooling

Shin et al., Macro Letters (2016)

Liquid crystal networks as thermally functional soft matter

 Reorientation of molecular order at T>Tg is relatively slow.

Conclusions

- Elastic constants, i.e., sound velocities and the minimum thermal conductivity model, can account for much of the variation in the thermal conductivity of amorphous polymers.
 - High thermal conductivity, 0.67 W m⁻¹ K⁻¹, poly(vinylphosphonic acid calcium salt)
 - Low thermal conductivity, 0.06 W m⁻¹ K⁻¹, in fullerene derivatives
 - Other cage structures do not produce such dramatically low thermal conductivities.
- Demonstrated that liquid crystals will be a rich subject for studies of "thermally functionally soft materials".
 Search underway for higher contrast and faster response.