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e |Introduction to...

— pump-probe measurements by conventional time-
domain thermoreflectance (TDTR);

— and time-resolved magneto-optic Kerr effect (TR-MOKE)

e Polarization signal generated by a magnetic layer enables
use of thinner transducers

— Less thermal mass - faster time resolution
— Reduced in-plane thermal conductance

— Greater sensitivity to interfacial phenomena when the
Kapitza length is small

e Some practical issues of TR-MOKE versus TDTR
— Ultrafast time response
— Linearity and temperature range
— Sensitivity and noise



Time-domain thermoreflectance
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Large dR/dT is desired for higher signal-to-noise
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Thickness of the transducer sets limits on time-resolution

e Limited by interface conductance.

— Equivalent to discharging of a capacitor through
a resistor

o[ JVO) =T

h= 60 nm; C=2.5 MJ m3 K1; G=200 MW m-2 K-1




Thickness of the transducer sets limits on time-resolution

e Limited by effusivity of the sample

— When does the heat capacity of a layer of the
thermal diffusion distance in the sample equal
the heat capacity of the metal film?
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h2
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h=60nm; D> 10" m?2 s! (glassy polymer)
Te < 36 NS




What could we do If the transducer was 6 nm

thick instead of 60 nm thick?

e Access time scales in high thermal conductivity
crystals down at —100 ps.

e Increase sensitivity to low thermal conductivity
materials by reducing the product of modulation
frequency (f = 10 MHz) and the cooling time of the
transducer.

— Even for a glassy polymer 27fr. <1

e Reduce parasitic in-plane thermal conductance of the
metal film transducer, ultimately hA;~0.1 pW K-1

— In our initial work using TR-MOKE,
hA=0.4 pyW K-1 (vs. 10 pW K-1for Al in TDTR)



In TR-MOKE, d0/dT replaces dR/dT of a conventional

thermoreflectance measurement
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Time-resolved magneto-optic Kerr effect (TR-MOKE)
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Perpendicular magnetic materials are the most

convenient (polar Kerr effect)

e [Co,Pt] multilayers, 5-20 nm, sputter deposit at

room temperature.

d_H ~107 K™
dT

e L1, phase FePt:Cu, 5 nm, sputter deposit at
room temperature followed by rapid thermal
annealing to 600 °C. 40

e Amorphous TbFe (Xiaojia Wang at UMN), 25 nm,
sputter deposit, cap with Ta.

d_(9 ~3x10”° K™
dT



Kerr signal from a semitransparent magnetic layer is

only weakly dependent on dn_/dT of the sample

e For an optically thin magnetic transducer of
thickness d, index n, and magneto-optic
coefficient Q, on a sample of index n..
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e The critical parameter entering into a7 IS
1 dQ

~10% K% for [Co,Pt]

QdT



Kerr signal from a semitransparent magnetic layer is

only weakly dependent on dn_/dT of the sample

e \Worst case scenario where laser excitation of
the Si substrate creates a strong contribution to
the TDTR signal. TR-MOKE Is immune.
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Our first application has been in measurements of in-

plane thermal conductivity

e Pt/Co multilayers. Structure from top to bottom
Pt(1 nm)/[Co(0.5 nm)Pt(1 nm)]><6/Pt(10 nm)
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Our first application has been in measurements of in-

plane thermal conductivity: MoS,

e Beam offset time-resolved MOKE measurements
of [Co,Pt]/MoS, to determine in-plane thermal
conductivity as a function of laser spot size.
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Dig into a few more technical details...

e Ultrafast time response

e Linearity and temperature
range

e Sensitivity and noise



Magnetic transducers (far from T.) have a time-response

of a few ps governed by magnons—>electron->phonon

coupling
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Tradeoffs between sensitivity, linearity, and

temperature range. Example of [Co,Pt] multilayers
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Single Co layer (0.8 nm thick) in the middle of 4 nm

of Pt on 440 nm SiO./Si
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Single Co layer (0.8 nm thick) in the middle of 4 nm

of Pt on 440 nm SiO./Si

TR-MOKE data normalized to model with G = inf.
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Laser intensity noise is almost completely suppressed in a

measurement of polarization using a balanced detector
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e Thermoreflectance (thermometry by using intensity of
light) versus magneto-optic Kerr effect (thermometry using
polarization of light)

e Kerr effect transducers are relatively immune to what is
happening in other parts of the sample. Polarization
rotation is specific to the magnetic layer.

e Thin transducers enable higher time resolution and better
sensitivity for in-plane transport.

e A single 0.8 nm layer of Co sandwiched in a 4 nm Pt layer
provides high signhal-to-noise and extremely small thermal
mass. Need to find a simple way to control contamination
by hydrocarbons and adsorbed water.

e Great opportunities for materials engineering of improved
Kerr effect transducers to improve sensitivity and stability.
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