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e Modify thermal conductance of interfaces
using

— chemistry: transfer-printing on self-
assembled monolayers with controlled
chemistry

— pressure: systematically vary the strength
of weak, anharmonic, interfacial bonds

— morphology: transfer-printing of rough and
smooth films on a variety of elastically stiff
substrates



Time domain thermoreflectance (TDTR)since 2003
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e One-laser/two-color
approach tolerates diffuse
scattering

Clone built at Fraunhofer Institute for
Physical Measurement, Jan. 7-8 2008




Self-assembled monolayers with controlled chemistry

1. Can we modify
the thermal
conductance of an
Interface by
Introducing a
molecular layer?

2. What
parameters
matter?
-Bonding?
-Chain Length?




Transfer printing of Au film to SAM-coated quartz




TDTR data for Au/SAM/quartz interfaces
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Interfacial bonding controls conductance G
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What can pressure dependence tell us about

thermal transport at interfaces?
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TDTR is all optical method: adaptable to

“extreme” environments such as high pressure

Diamond anvil cell
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Clean SIC anvil at high temperatures

and deposit Al film /n-situ by sputtering
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Compare clean interface with a layer of

CVD graphene inserted at the interface

e Clean interface has the
weak pressure
dependence expected
from diffuse-mismatch
(DMM) calculations.

e Insert graphene: low
conductance and
strong pressure
dependence.

e At P>8 GPa, “weak”
Interface becomes
“strong” and
conductance is high.
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Assemble interfaces by transfer-printing
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Use height-difference correlation function to

characterize roughness

g(p) = ((hi — hy)?) 5
= h, h; are surface heights at / )
locations /,j; p is the
distance between j,J. e 1F -
e Assume that roughness of = ,

e . Q - SiO . ;
the sacrificial layers (Cr for = EEE
Au(Pd) and SiO, for Au)is & | -1 o
approximately the same as i o ]
the roughness of the metal 01—
film “ink”. Si:H

- SiO,, sapphire (ALO,) and ' —
hydrogen terminated Si
(Si:H) substrates.



Possible mechanisms for heat transfer at an interface

between two elastically stiff solids (Persson 2010)

(a) near-field electromagnetic  (¢) conduction through H,O
radiation liquid bridges

(b) gas conduction @nduction across t@
area of contact




Compare interfaces formed by transfer-printing

and sputter deposmon
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Compare interfaces formed by transfer-printing,

sputter deposition, and transfer-print+anneal
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Data provide insight and constraints on mechanisms

(a) Near-field electromagnetic radiation is not significant.

Si has no infrared active vibrational modes at long
wavelengths. Temperature dependence for transfer-printed
Interfaces is weak: near-field radiation not an important factor

(b) Gas conduction is not significant.
Small on the scale of our observations

GrAalA~01MWm? K™

(c) Conductance through H,O liquid bridges is observable

G initially drops with increasing temperature as capillary
bridges are removed but conductance remains high

(d) Conductance through true area of contact.
Relatively large G is caused by relatively large (A/A))



Overall conclusions

e Much to learn about the thermal conductance of interfaces
but we now have powerful tools (experiment and
computation).

e Changing chemistry of SAM/AuU interface confirms that
weak bonding suppresses thermal conductance.

e Measurements at high pressure (10 GPa) allow us to vary
the strength of weak, anharmonic interface bonds and
observe changes in thermal conductance.

e Transfer printed interfaces have a surprisingly large
conductance: >10% of the value of interfaces formed by
sputter deposition.

— Explained by relatively large area of true contact
formed by capillary forces (?)

— Not an issue for thermal management except in the
case of extremely high heat fluxes, > 10 kW cm™2



