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Motivation

. Anisotropy of the apparent thermal conductivity In
a TDTR measurement of Si

II. Manipulate the spectrum of heat carriers using B
and Ge doping of Si

I11.Consequences for TDTR measurements of interface
thermal conductance

Conclusions



Time domain thermoreflectance since 2003
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TDTR and phonon mean-free-path spectroscopy

e Time-domain thermoreflectance (TDTR) is a powerful
method but we do not deeply understand what we are
measuring.

— When is Fourier’s law an adequate description and when
does it fail?

— Answer depends on the details of the sample, the
dimensionality of the heat conduction, and the transport
properties of the metal/sample interface.

e Bring it to the next level: If we can quantitatively
understand the failure of the Fourier’s law, can we use
that information to characterize the distribution of
phonon-mean free paths?

— The metal/sample interface complicates the problem and
the answer depends on the details of the sample.



TDTR and phonon mean-free-path spectroscopy
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Fourier theory has been
observed to fail in TDTR
measurements of

semiconductor alloys
as a function of f

Y. K. Koh, D. G. Canhill

PRB 76, 075207 (2008)

silicon below 100 K
as a function of w,
A. Minnich et al.
PRL 107, 095901 (2011)

Why does Fourier theory fail with frequency in semiconductor
alloys but fail with spot-size in Si at cryogenic temperatures?



. Anisotropic apparent thermal conductivity of Si

« Conventional TDTR with
overlapping pump and
probe

« Dependence on spot size
IS only seen in the out-of-
phase signal

« Change in apparent
thermal conductivity is
from 140 to 105 W m K1
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. Anisotropic apparent thermal conductivity of Si
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scales of the temperature excursions

interface

the r and z directions
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. Anisotropic apparent thermal conductivity of Si

e |Is it physically reasonable that a cubic crystal can have an
anisotropic apparent thermal conductivity?
— No, if all of the heat carriers are diffusive on the length

— Yes, if ballistic carriers are significant and there is an

e Consider the temperature profiles near the laser spot in
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1. Manipulate the spectrum of heat carriers using

B and Ge doping of Si.

e B preferentially scatters low frequency phonons
(phonon/hole scattering)

e Ge preferentially scatters high frequency phonons
(phonon Rayleigh scattering)
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1. Manipulate the spectrum of heat carriers using

B and Ge doping of Si.

Garg (2014) Li (2012)
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Digression: Differences between the 15t principles
calculations are significant
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Vary phonons, modulation frequency, spot size

e Low thermal diffusivity of the high frequency phonons is
key factor in the failure of Fourier’s law in TDTR

200 | | |
> 200
100:_E__,‘__::___E___U____‘L:__I_i_ | | | | l
Si:B S
- s} 0 8.
. C [e} =
________ ﬁ________________(_::‘l?__ ":-‘ 1GD i - Si.B :
~ S0=F =0 5 a4k T :
L [~ _E_ """""""""""" I i
T T 3 B
£ . 3| £ sol- - —
z Sig.geGeg o4 p Sig.geGe€p o1
20 — —H = - R} 5] 0
= 0 T 2 - -
1
0 —=__ o ________ — op | | | | |
Q %) [e) Sip ,Geg g ! 2 5 10 20
i) - _ Spot-size (um)
5 - =
| | | | -
1 2 5 10 20

Frequency (MHz)



2,000

...and vary temperature

1,000
e Differences are more dramatic
at low temperatures

— Fourier law is a good
description for Si:B down to
50 K
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I1l1. Consequences for measurements of interface
thermal conductance

e When the thermal diffusivity of the high frequency

phonons is small, the apparent interface conductance is
reduced and also depends on frequency.
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I11. Consequences for measurements of interface

thermal conductance

Different phonons carry heat across
the interface than carry heat in the solid
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A spatial mismatch exists in the spectral distribution of the heat-current.



I1l1. Consequences for measurements of interface

thermal conductance

e For materials with low thermal diffusivity high frequency
phonons, the non-equilibrium region created by this
mismatch appears in the TDTR measurement as

— a small interface conductance a low modulation
frequency.

— a reduced thermal conductivity at high modulation
frequencies.

e The frequency dependence of the thermal conductivity
depends on the transport properties of the interface.



Take-home messages:

e TDTR is surprisingly robust. Even when mean-free-paths
are comparable to thermal diffusion lengths, deviations
from solutions based on Fourier’s law are typically minor.

— More significant failures in the radial, as opposed to the
through thickness direction.

— More significant failures when the thermal diffusivity of
the high frequency phonons is small

— More significant failures when the thermal conductivity
accumulation function is broad.

e Phonon mean-free-path spectroscopy by varying thermal
penetration depth?

— Essentially correct when the thermal diffusivity of the
high frequency phonons is small and the accumulation
function is broad.



Take-home messages:

e Can we reliably map the apparent thermal
conductivity to thermal conductivity accumulation
function?

— Probably “yes” when the accumulation function is
relatively broad. But the interface matters.

— Probably insufficient sensitivity if the accumulation
function is narrow; see, e.g., the null result for Si:B
at low temperatures



