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Motivation (big picture): Improve experimental methods 
for probing heat transfer and phase transformations at 
solid/liquid and vapor/liquid interfaces

• Prior study of thermal conductance of hydrophobic 
and hydrophilic interfaces with water

Ge et al., Phys. Rev. Lett. (2006)



Motivation (big picture): Improve experimental methods 
for probing heat transfer and phase transformations at 
solid/liquid and vapor/liquid interfaces

• Prior study of fast water desorption from a 
hydrophilic surfaces by time-resolved ellipsometry

Min et al., J. Phys. Chem. C (2012)



Outline

• Thermal conductance of interfaces

• Nanodisk sensors (prepared for us by Insplorion) and 
characterization of their sensitivity and depth resolution.

• Application to interface thermal conductance and thermal 
diffusivity of fluids by separating the response from the Au 
temperature and the index change in the adjacent fluid. 
(unpublished)

• Initial application to fast condensation and evaporation of a 
refrigerant (R124) from interfaces with controlled 
chemistry. (work in progress)



Thermal transport coefficients

• Thermal conductance (per unit area) G is a 
property of an interface

• Thermal conductivity  is a property of the 
continuum



Interface conductance spans a factor of 60 range 
at room temperature

nanotube/alkane

W/Al2O3 

Au/water

PMMA/Al2O3

Lyeo and Cahill, PRB (2006)



Insplorion nanodisk plasmonic sensors

• Fabricated by “hole-mask colloidal lithography”

• Au adhesion to SiO2 substrate is good even though they 
avoided the use of a conventional Cr or Ti adhesion layer 
(Cr or Ti would damp the plasmon)

Au disk diameter 120 ± 10 nm, height 20 ± 2 nm

SEM AFM



Sensitivity d(Tr)/dn (change in transmission coefficient 
with respect to optical index) approaches unity

• Coat with PMMA and take difference 
spectra of the absorption.

• Noise floor of pump-probe 
measurements should be
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Sensitivity to dn is localized to within 13 nm of 
the Au surface

• Atomic-layer deposition of alumina

• Assuming constant deposition rate per cycle



Long-pass optical filter

Short-pass 
optical 
filter

Kang et al., RSI (2008)

Time-domain thermoreflectance 
and transient absorption



Signal is a combination of the temperature 
change of the Au and the temperature (or 
pressure or density) change of the surroundings

• Isolate the two terms using a linear combination of the 
response at two wavelengths.

• “breathing mode” acoustic oscillation is minimized at the 
same wavelength that minimizes the sensitivity to fluid 
temperature.
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Vary the contributions from TAu and Tfluid by 
varying wavelength of the probe light
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Signal from the lateral “breathing mode” acoustic 
oscillation is minimized at the same wavelength that 
minimizes the sensitivity to fluid temperature
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Modeling of heat transfer builds on our standard 
methods of analyzing TDTR data.

• Model the 120 nm diameter, 
20 nm thick heat source as a 
120 nm diameter uniform 
intensity laser beam heating 
a blanket 20 nm Au film that 
has zero in-plane thermal 
conductivity.

• dn/dT of the fluid dominates 
over dn/dT of the glass 
substrate so model the signal 
as a weighted average of the 
temperature of the fluid 
within 13 nm of the Au



Control the surface chemistry using self-
assembled monolayers (thiol bond to Au surface)

• Plasmon resonance is a built-in diagnostic for what is 
happening near the interface. 

1.32 1.34 1.36
790

800

810

820

P
ea

k 
w

av
el

en
gt

h 
(n

m
)

Refractive index (n)

hydrophilic

bare

hydrophobic

Water Ethanol
1.0 1.2 1.4 1.6

720

740

760

780

800

820

840

P
ea

k 
w

av
el

en
gt

h 
(n

m
)

Refractive index (n)

hydrophilic

bare

hydrophobic

Hydrophilic HS(CH2)3SO3 and hydrophobic HS(CH2)9CH3



Data acquisition and analysis for interfaces with 
fluid mixtures

• First step: select wavelength that minimizes contribution 
from fluid temperature

• Compare to thermal model with interface conductance as a 
free parameter using literature values for fluid 
thermophysical properties
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Data acquisition and analysis for interfaces with 
fluid mixtures
• Next step: shift wavelength to provide greater sensitivity to 

fluid temperature near the interface.
• Subtract breathing mode acoustic signal by fitting to a 

damped oscillator
• Compare to thermal model with interface conductance as a 

free parameter
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Vary liquid composition between pure ethanol and pure 
water for hydrophobic SAM, hydrophilic SAM, and “bare” Au.

• Data for pure water and pure ethanol are in agreement with 
prior work for planar interfaces and supported nanoparticles.

• Data for pure ethanol are relatively insensitive to the interface 
chemistry.

• Competitive adsorption of water at the hydrophilic interface (?)
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Initial experiments on a refrigerant as a function of pressure

plasmonic substrate



R124 gas chromatograph analysis
1-chloro-1,2,2,2-tetrafluoroethane (99.79%)
1,1,1,2,2 – pentafluoropropane (0.21 %)

• Vapor pressure is ≈40 psi at lab temperature
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Initial experiments are “frequency domain” (not “time-
domain”) to access longer time scales

• Fixed negative delay time (probe pulse arrives 20 ps before 
pump pulse)

• Vary frequency of pump over a wide range (10 Hz to 10 MHz)
• Correct for the phase and amplitude of the system response 

using pump beam directly incident on the fast photodiode.
• In vacuum, the signal is due to the Au temperature 
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Only at the highest frequencies (>1 MHz) is the 
temperature not laterally homogeneous on the length scale 
of the separation between Au nanodisks (200 nm)
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Now add R124 at 17 psi (approximately ½ of the vapor 
pressure)

• Difference between vacuum and 17 psi  only appears at f<10 kHz.
• Work in progress.  Results are not what we were expecting. (Much 

smaller and much slower).
• Au surface is coated by hydrophobic SAM.  Maybe not completely 

stable in contact with refrigerant vapor
• Will  need to consider Maragoni effects (fluid flow) in addition to 

evaporation/condensation
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Comparison of vacuum and 17 psi of R124
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Summary  

• Plasmonic nanodisks are powerful platform for probing 
small changes in index of refraction due to temperature 
excursions in liquids or evaporation/condensation of thin 
layers (or changes in density/pressure) near an interface.

• Signal due to the index of refraction of the fluid provides 
greater sensitivity to interface conductance (needed when 
the thermal effusivity of the fluid is small).

• Kaptiza length for ethanol in contact with hydrophilic and 
hydrophobic SAMs is ≈3 nm. 

• Experiments on refrigerant (R124) as a function of 
pressure, temperature, and surface chemistry are in 
progress.


