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Motivation (big picture): Improve experimental methods

for probing heat transfer and phase transformations at
solid/liquid and vapor/liquid interfaces

e Prior study of thermal conductance of hydrophobic
and hydrophilic interfaces with water

Water

TSI

Au ~ 10nm

HOHOH

Al ~ 20nm

Polyimide~30nm

Sapphire G =100+20 MW m2 K™, h=6nm

substrate Tmm 10 1 00 1 OOO
SiO2 130nm t (ps)

(b) Ge et al., Phys. Rev. Lett. (2006)

Au

Y,
N
N




Motivation (big picture): Improve experimental methods

for probing heat transfer and phase transformations at
solid/liquid and vapor/liquid interfaces

e Prior study of fast water desorption from a
hydrophilic surfaces by time-resolved ellipsometry
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e Thermal conductance of interfaces

e Nanodisk sensors (prepared for us by Insplorion) and
characterization of their sensitivity and depth resolution.

e Application to interface thermal conductance and thermal
diffusivity of fluids by separating the response from the Au
temperature and the index change in the adjacent fluid.
(unpublished)

e Initial application to fast condensation and evaporation of a
refrigerant (R124) from interfaces with controlled
chemistry. (work in progress)



Thermal transport coefficients

e Thermal conductivity A is a property of the

continuum
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e Thermal conductance (per unit area) G is a
property of an interface
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Interface conductance spans a factor of 60 range

at room temperature
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Insplorion nanodisk plasmonic sensors

e Fabricated by “hole-mask colloidal lithography”

e Au adhesion to SiO, substrate is good even though they
avoided the use of a conventional Cr or Ti adhesion layer
(Cr or Ti would damp the plasmon)

Au disk diameter 120 = 10 nm, height 20 £ 2 nm




Sensitivity d(Tr)/dn (change in transmission coefficient

with respect to optical index) approaches unity

e Coat with PMMA and take difference
ect f the tion.
spectra o absorptio AN = 0.3 ppm Hz"2
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e Noise floor of pump-probe
measurements should be
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Sensitivity to dn is localized to within 13 nm of

the Au surface

e Atomic-layer deposition of alumina

e Assuming constant deposition rate per cycle

Increasing the thickness of Al,O,
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Time-domain thermoreflectance

and transient absorption
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Signal is a combination of the temperature

change of the Au and the temperature (or
pressure or density) change of the surroundings

ar 2900 pp 400

dTAu dTﬂuid

e Isolate the two terms using a linear combination of the
response at two wavelengths.

e “breathing mode” acoustic oscillation is minimized at the
same wavelength that minimizes the sensitivity to fluid
temperature.



Vary the contributions from AT,, and AT;,4 by
varying wavelength of the probe light
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Signal from the lateral “breathing mode” acoustic
oscillation is minimized at the same wavelength that

minimizes the sensitivity to fluid temperature
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Modeling of heat transfer builds on our standard

methods of analyzing TDTR data.

e Model the 120 nm diameter,
20 nm thick heat source as a Data analysis (analytical model)
120 nm diameter uniform el et e ~ |7 E
intensity laser beam heating
a blanket 20 nm Au film that
has zero in-plane thermal

conductivity.

e dn/dT of the fluid dominates I%
over dn/dT of the glass
substrate so model the signal
das d Welghted average Of the Interface conductance/
temperature of the fluid
within 13 nm of the Au

Fused silica
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Control the surface chemistry using self-

assembled monolayers (thiol bond to Au surface)

e Plasmon resonance is a built-in diagnostic for what is
happening near the interface.
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Data acquisition and analysis for interfaces with

fluid mixtures

e First step: select wavelength that minimizes contribution
from fluid temperature

e Compare to thermal model with interface conductance as a
free parameter using literature values for fluid
thermophysical properties
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Data acquisition and analysis for interfaces with

fluid mixtures

o Next step: shift wavelength to provide greater sensitivity to
fluid temperature near the interface.

e Subtract breathing mode acoustic signal by fitting to a
damped oscillator

e Compare to thermal model with interface conductance as a
free parameter
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Vary liquid composition between pure ethanol and pure

water for hydrophobic SAM, hydrophilic SAM, and “bare” Au.

e Data for pure water and pure ethanol are in agreement with
prior work for planar interfaces and supported nanoparticles.

o Data for pure ethanol are relatively insensitive to the interface
chemistry.

e Competitive adsorption of water at the hydrophilic interface (?)
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Initial experiments on a refrigerant as a function of pressure
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R124 gas chromatograph analysis

1-chloro-1,2,2,2-tetrafluoroethane (99.79%)
1,1,1,2,2 — pentafluoropropane (0.21 %)

e Vapor pressure is =40 psi at lab temperature
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Initial experiments are “frequency domain” (not “time-

domain”) to access longer time scales

e Fixed negative delay time (probe pulse arrives 20 ps before
pump pulse)

e Vary frequency of pump over a wide range (10 Hz to 10 MHz)

e Correct for the phase and amplitude of the system response
using pump beam directly incident on the fast photodiode.

e In vacuum, the signal is due to the Au temperature
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Only at the highest frequencies (>1 MHz) is the

temperature not laterally homogeneous on the length scale
of the separation between Au nanodisks (200 nm)

Calculated thermal response, 3 mW pump
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Now add R124 at 17 psi (approximately 2 of the vapor

pressure)

e Difference between vacuum and 17 psi only appears at f<10 kHz.

e Work in progress. Results are not what we were expecting. (Much
smaller and much slower).

e Au surface is coated by hydrophobic SAM. Maybe not completely
stable in contact with refrigerant vapor

e Will need to consider Maragoni effects (fluid flow) in addition to
evaporation/condensation
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Comparison of vacuum and 17 psi of R124
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e Plasmonic nanodisks are powerful platform for probing
small changes in index of refraction due to temperature
excursions in liquids or evaporation/condensation of thin
layers (or changes in density/pressure) near an interface.

e Signal due to the index of refraction of the fluid provides
greater sensitivity to interface conductance (needed when
the thermal effusivity of the fluid is small).

e Kaptiza length for ethanol in contact with hydrophilic and
hydrophobic SAMs is =3 nm.

e Experiments on refrigerant (R124) as a function of
pressure, temperature, and surface chemistry are in
progress.



