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Interfaces are critical at the nanoscale

• Low thermal conductivity in 
nanostructured materials
– improved thermoelectric 

energy conversion
improved thermal barriers– improved thermal barriers

• High thermal conductivity 

50 nm

• High thermal conductivity 
composites and suspensions

• Localization of thermal effects: 
medical therapy/biotechnology



Interface thermal conductance

• Thermal conductivity Λ is a property of the 
continuum

• Thermal conductance (per unit area) G is a 
f fproperty of an interface



Factor of 60 range at room temperature

Au/surfactant/water

PMMA/Al2O3

nanotube/alkane



Modulated pump-probe apparatus

f=10 MHz

rf lock-in



Solid-liquid interfaces: Two approaches

• Transient optical absorption of nanoparticles and 
nanotubes in liquid suspensions.nanotubes in liquid suspensions.
– Measure the thermal relaxation time of a suddenly 

heat particle.  Interface sensitive if the particle is 
ll hsmall enough.

– limited to interfaces that give good stability of the 
suspension  e g  hydrophilic particles in H2Osuspension, e.g., hydrophilic particles in H2O

• Time-domain thermoreflectance of thin planar Al 
and Au films.
– heat flows both directions: into the fluid and into 

the solid substrate.



Nanotubes in surfactant in water: 
Transient absorption

• Optical absorption 
depends on 
temperature of the temperature of the 
nanotube

• Assume heat 
capacity is 
comparable to 
graphitegraphite

• Cooling rate (RC 
time constant) 
gives interface 
conductance
G = 12 MW m-2 K-1G = 12 MW m K



Application: Critical aspect ratio for 
a fiber composite

• Isotropic fiber composite with high conductivity 
fibers (and infinite interface conductance)( )

• But this conductivity if obtained only if the 
aspect ratio of the fiber is high

• Troubling question: Did we measure the 
relevant value of the conductance? relevant value of the conductance? 

"heat capacity G" vs. "heat conduction G"



Comparisons between experiment
and simulation: general considerations

Experiment Simulation
• optical pulse creates • no electrons but can add 

electronic excitations 
which decay
– electron-phonon

heat any way we want
• all vibrational modes are 

thermally excitedelectron phonon
– phonon-phonon 

• high frequency vibrations 

thermally excited.
• uncertainties in potentials
• finite-size simulation cell 

are quantized
• interfaces are difficult to 

prepare and characterize

finite size simulation cell 
removes lowest-
frequency vibrations and 
creates problems for long prepare and characterize creates problems for long 
mean-free-paths



Simulation: relaxation time

• Mimic the experiment: 
heat nanotube 

dd l  d l t suddenly and let 
system equlibrate

• Use experimental heat Use experimental heat 
capacity to convert 
time constant to G. 
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Simulation: Mechanisms for 
interface heat conduction

0.030

0.035
30 ps

550

600

K
]     nanotube 

temperature Lowest frequency

u
ct

an
ce

 

0.020

0.025

A
U

 [1
/p

s]

360450

500

550

pe
ra

tu
re

 [K

temperature Lowest frequency
bending mode  

C
o
n
d
u

0.010

0.0151/
TA 280

200
140 100

240
350

400

M
od

e 
te

m

liquid temperature

0.000 0.002 0.004 0.006 0.008 0.010

1/N t

0.005
140 100215 ps

1/tube length

300
0 3 6 9 12 15

Mode frequency [tHz]

• Carbon nanotubes have a small number of low 
frequency modes associated with bending and 
squeezing. Only these modes can couple squeezing. Only these modes can couple 
strongly with the liquid.



Hydrophilic metal nanoparticles: 
4 nm diameter Au:Pd nanoparticles in water

• transient absorption data
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Nanoparticle summary
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Application: Critical particle 
radius for a nanofluid

• Interface conductance and thermal conductivity 
of the fluid determine a critical particle radiusp

rc = Λ/G

• For particles in water, rc = 3 nm.

• For high thermal conductivity particles, dilute 
limit of effective medium theory

r >> rc     ΔΛ = (1+3φ)Λr >> rc     ΔΛ  (1+3φ)Λ
r << rc ΔΛ = (1−1.5φ)Λ



Thermoreflectance of solid/H2O interfaces

hydrophobic
50 MW/m2-K50 MW/m K

no water

h d hilihydrophilic
100 MW/m2-K



Thermoreflectance of solid/H2O interfaces

• Experiments contain many interfaces and layers 
so look at the difference in the conductance so look at the difference in the conductance 
created by changing from hydrophobic to 
hydrophilic.

• Define Kapitza length, equivalent thickness of 
water:  h =Λ/G
– Au/hydrophobic h = 12 nmAu/hydrophobic h  12 nm
– Au/hydrophilic   h = 6 nm

• Difference      Δh=6 nm



Simulation of model interfaces
T
 (

K
)

water-octane water-benzene

z (A) z (A)

water octane water benzene
G = 65 MW/m2-K               G = 175 MW/m2-K



Water - Surfactant - Hexane Interface

GH2O-surf = 300 ± 30 MW/m2-K

G f h  = 370 ± 30 MW/m2-KGsurf-hex  370 ± 30 MW/m K

High conductivity of the High conductivity of the 
ordered surfactant

Λsurfactant = 9 W/m-K

T
 (

K
)

Λhexane = 0.11 W/m-K 

T

(0.09 exp)

z (A)



Simulated vibrational spectra

Interface G
(MW/m2-K)

Λ-H2O/G 
(nm)

Water 65 9Water 
Octane

65 9

Water 
Benzene

175 3.4

Water 
Surfactant 

300 2

Surfactant 370 1.6
Hexane

Surfactant
Benzene

190 3

difference between 
water/octane and 
water/surfactantwater/surfactant

Δh = 7 nm



Summary (so far)

• Simulations of nanotube/octane show twice the 
conductance of experiment on nanotube/alkane-
surfactantsurfactant.
– experiment: nanotubes form small bundles?  large 

electron-to-phonon-to-phonon resistance? 
– simulation: lack of quantization?
– both: surfactant structure?

• The difference in Kapitza lengths for hydrophobic and • The difference in Kapitza lengths for hydrophobic and 
hydrophilic interfaces is nearly identical in simulation 
and experiment. 
– experiment 6 nm (for Au) and 7 nm (for Al)
– simulation 7 nm

• Large discrepancy for organic-organic interfaces: need g p y g g
to revisit the experiments.



Heat transport and ultrafast disordering 
of an organic molecule (with Dana Dlott)



Classic “flash diffusivity” measurement 

http://electronics-cooling.com/articles/2002/2002_may_a4.php



Broad-band sum-frequency generation 
(SFG) vibrational spectroscopy

• tunable (2.5-18 μm) broad-band IR pulse
• fixed (800 nm) narrow band• fixed (800 nm) narrow band
• sum-frequency signal analyzed by spectrograph

sum-frequency

50 nm Au on glass substrate
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Complicated thermometer

• MD simulation of suddenly heated alkane 
molecules: greatest sensitivity near 500 K.

• Disordering occurs in 1 ps for large(>300 
K) temperature excursion



Time-resolved sum-frequency spectroscopy



Interface limited heat transport

• Both onset and time-
constant of disordering 
are approximately linear 
in chain length

• Suggests heat transport is 
controlled by the interface 
(not diffusive in the 
molecule)molecule)

• Estimate of molecule heat 
capacity gives thermal 
conductance of conductance of 
approximately 50 pW/K


