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e Part I. Extremes. Heat conduction by spin waves in
one-dimensional quantum spin systems

- Determine strength of magnon-phonon coupling
using frequency dependence of the thermal
conductivity as measured by time-domain
thermoreflectance.

e Part II: New thermal function. Spin-heat current
coupling in metallic multilayers

— produce a spin current by ultrafast heat flow
through a CoPt perpendicular magnetic layer.

— Kerr effect probe of transient spin polarization of a
Cu capping layer.

— Kerr effect probe of spin-torque effect on an in-
plane magnetic layer.



Time domain thermoreflectance since 2003
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approach tolerates diffuse
scattering
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Diversity of anti-ferromagnetic order in

copper-oxides
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Reports of extraordinarily high spin-wave thermal

conductivity near room temperature in “undoped”
ladder
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Magnon-phonon couplng and magnon thermal

conductivity in the spin ladder CagLa:Cu,,0,4

CuyO3-ladders
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Spin waves are intrinsically quantum mechanical

so hard to think about in classical analogies
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Frequency dependent spin-wave thermal

conductivity in CagLa:Cu,,0,,
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Use a two-channel model: magnons and phonons

e Sanders and Walton (1977) analyzed the steady-
state situation for the context of conventional
thermal conductivity measurements. Only
phonons can carry heat through the ends of the

sample. Jor, o . IT,
c 2 (x—) T —T.) =0
v o o \r gy ) T )
Q. AT Jor, 0 ( o1, ) B
Cm ot Or Am=a " dxr +9(Tm = Tp) = 0.

Solution for TDTR
L2 experiments: Wilson et
~ al., PRB (2013).
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Need to fix as many parameters as possible

e Use
mag
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Use a two-channel model: magnons and phonons

e Model calculations for 10 MHz TDTR experiment.

The coupling parameter g is adjusted to get the
best fit to the frequency dependent data

Temperature rise (K)
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Magnon-phonon coupling parameter
is strongly T-dependent

e g~1015 W m3 K1 near PEE]B 89, 024422 (2014)

the peak in the thermal
conductivity. (30 times
smaller than g for
electron-phonon coupling
in Au.)

e Does this coupling (and
therefore magnon-
phonon scattering)
determine the thermal
conductivity near the
peak?

e Is “two temperatures”
too crude of a model to
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Motivation I: Can we make use of spin in heat

engines?
e Electronic states enumerated o
by energy, wave-vector, spin
SPin . Spintronics
e Possible advantages in Ca"’”““"f \p
geometrical scaling, VE LVT.

Thermoelectrics
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Motivation II: Can we make use of heat

currents in information technology?

e Big picture problem: "How can we write magnetic
information without resorting to magnetic fields, e.g., with
spin currents?”

— Rapid changes in magnetization and strong temperature
gradients in magnetic materials should produce spin
currents.

— Magnitudes of the effects are only beginning to be
understood.



Time-resolved magneto-optic Kerr effect (TR-MOKE)

to measure magnetization and spin accumulation

Kerr rotation
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Time-resolved magneto-optic Kerr effect (TR-MOKE)

to measure magnetization and spin accumulation

Ti-Sapphire laser
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Two types of samples: i) for spin accumulation;

and ii) for spin-transfer torque
Sapphire/Pt(30)/[Co/Pt],,,(6)/Cu(80)/MgO(10)/AlOx(5) (in nm)

Cu Probe beam
===

magnetizatif

Sapphire/Pt(30)/[Co/Pt],,(6)/Cu(10)/CoFeB(2)/MgO(10)/AlOx(5) (in nm)
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Pump Pt-side, probe either Pt-side or Cu side

by either TDTR or TR-MOKE

Normalized Kerr signal from Co/Pt
is independent of Cu thickness

Cu
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Spin diffusion model

AU _ Daz,us M spin generation rate per unit volume
ot d’z T dM
G, =———
dt

Us=u+-u 1s the spin chemical potential

D 1s the spin diffusion constant

Ts 1s the spin relaxation time

_

D (nm2/ps) 200 6500
T, (PS) 0.5 0.05 25

(Dt )2 (nm) 10 2.2 400



Comparison between experiment and spin

diffusion model using spin generation = dM/dt

Measured Kerr signal on Cu side Spin diffusion model
E=36] m™ E=17 J m
Cu 100 nm
Cu 150 nm

Cu 200 nm

Time delay (ps) Time delay (ps)

= No prior studies of how to convert Kerr rotation
to spin accumulation.

= Working in progress to relate Kerr rotation
quantitatively to spin accumulation in Cu and

Au.



Temperature gradient also contributes to spin
accumulation
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Temperature gradient also contributes to spin

accumulation

 More refined data with comparison to spin diffusion
model including the spin-dependent Seebeck effect

« Comparison between model and data gives

A8,
AM

~85%x10 " radm A

Cu
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Use an in-plane magnetic layer of CoFeB to

calibrate the magnitude of the spin current
e Spin current kicks magnetization of CoFeB out-of-
plane (spin torque) and induces precession.

e Amplitude of the precession can be calibrated using
Kerr rotation in a static field perpendicular field.

Cu
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Combine spin diffusion model with

magnetization dynamics

e Spin current has transverse polarization with respect to
CoFeB magnetization, therefore, CoFeB is a perfect sink for
spin (spin chemical potential is zero at Cu/CoFeB interface)

e Cu layer is thin, therefore, we need to include finite spin
conductance at the [Co/Pt]/Cu and Cu/CoFeB interfaces

GT +GfL
e’

- longitudinal spin conductance ~ 0.4x101> Q1 m-2

— transverse spin conductance ReiGyy | 0.6x1015 Q-1 m-2

2
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Good agreement between predicted and

measured amplitude of spin precession

Landau-Lifshitz-Gilbert equation
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e Time-domain thermoreflectance
(TDTR) with MHz thermal waves
enables probing of non-
equilibrium between magnons
and phonons on sub-micron
length scales. 200

e Two-temperature model gives 100
magnon-phonon coupling
parameter g~10> W m-3 K1 at
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e Picosecond demagnetization of [Co/Pt] multilayer produces
spin-currents that can exert a spin-transfer torque on a in-
plane magnetic layer or produce spin accumulation in Cu

- 6% of loss of demagnetization of [Co/Pt] magnetization
is transferred to CoFeB layer

— Increase efficiency with [Co/Pd] or [Co/Ni] with longer
spin diffusion length?

e Experiments and modeling give a spin-dependent Seebeck
effect in [Co/Pt] of =5 uV K1

— Will a tunnel barrier produce a larger effect?



