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• Test theoretical models of thermal 
energy  transport in materials and 
across interfaces. 

• Pressure is used to systematically 
vary phonon and electron 
densities of states; and stiffness of 
interface bonding
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Overview

• Background – thermal transport coefficients
• Methods – time-domain thermoreflectance, diamond 

anvil cell
• Thermal conductance of metal-diamond interfaces at 

high pressures.
• Thermal conductivity measurements of metallic Si 

without a transducer layer.



How we think about thermal conductivity

• Fourier’s law defines a thermal conductivity:

• From Boltzmann transport equation to relaxation time 
approximation (RTA):

• We measure the integral, Λ, to study the integrand, Λ(ω).
• Fit models for Λ(ω) to Λ(T), Λ(P) data.



How we think about interface thermal conductance

• Discrete form of Fourier’s Law:

• Isotropic model:

• We measure the integral, G, to study the integrand G(ω). 
• Fit models for G(ω) to G(T), G(P) data.

[weak bonding, non-equilibrium effects, …]



Time-domain thermoreflectance (TDTR)

• Pump-probe optical 
method for measuring 
heat transport at small 
length and time scales.



TDTR on diamond anvil cell (DAC) samples at high pressure

Boehler-Almax49 mm



The question of thermal conductance between highly 
dissimilar materials
• Has roots in the Kapitza resistance problem for liquid He interfaces (1941-).
• Present incarnation, metals on diamond, Stoner and Maris in 1993.

Lyeo and Cahill, Phys. Rev. B. 73 (2006)

Radiation limit: maximum two-phonon 
thermal conductance.



New information from a new control: high pressure

Xie et al., PRB 60 (1999)
Menendez-Proupin, PRB 76 (2007)

Tambe et al., PRB 77 (2008)
Menendez-Proupin et al., PRB 76 (2007)
Greef & Graf, PRB 69 (2004)

Pressure tuning of mismatched 
phonon densities of states (DOS)

Can explore wide stiffness 
range with different metals



Data for 4 metals on 1A and 2A diamond as a function of 
pressure up to 50 GPa

Hohensee, Wilson, Cahill, Nat. Comm. 6, 6578, (2015) 



Observation A: no measurable dependence on defect density 
of the diamond anvils

• We have previously seen an anomalous dependence of 
interface conductance on dilute Ge additions to Si

• Attributed to non-equilibrium phonon distributions near the 
interface.

• Type 1A and 2A diamonds show the same thermal 
conductance

• Our type 1A diamonds have a thermal conductivity only 1/3 
of pure diamond (700 W m-1 K-1) due to high nitrogen 
concentration (1500 ppm by our analysis)

• Null result suggests non-equilibrium phonon distributions 
are not important in these experiments.



Observation B: conductance of Pt/diamond and Au/diamond 
interfaces are similar

• Pt and Au have very different electron-phonon coupling 
strengths (Pt is larger by a factor of 20 by our 
measurements)

• Pt and Au have very different electronic heat capacities (Pt is 
larger by a factor of 11)

• Null result suggest electron-phonon coupling is not important

Re-p

Rp-p

R*
e-p

metal diamond• Electron-phonon coupling within 
the metal contributes a series 
resistance

• Electron-phonon coupling from 
metal to diamond contributes a 
parallel conductance.

Majumdar et al., APL (2004)

Mahan, PRB (2009) 



Observation C: pressure dependence of the data is much 
weaker than the pressure dependence of the radiation limit

• Excess conductance beyond the 
two-phonon, one phonon in 
diamond (d) and one phonon in 
metal (m) is attributed to three 
phonon interactions

• But which phonons?

1 2m m d+ ⇔

• Metal phonons change significant with 
pressure so two metal phonons interacting 
with one diamond phonon should be strongly 
pressure dependent

• Data are consistent (pressure dependence 
and magnitude) with a “partial transmission” 
mechanism

1 2d d m+ ⇔



Digression: Highest thermal conductance ever observed is 
for Al/MgO at high pressure, G>1 GW m-2 K-1

Stiffening of weak
interfacial bonds



Stiffening of weak interfacial bonding was reversible in our 
prior work; at higher pressure, changes are not irreversible

• Example of pressure driven chemistry at interfaces?

Hohensee, Ph.D. thesis, U. Illinois (2015)Hsieh et al, PRB (2011)



Conclusions for interface conductance 

• For dissimilar interfaces (metal/diamond), a partial 
transmission processes where two diamond phonons 
interact with one metal phonon provides a significant 
channel for heat transport

• Pressure strengthens weak interfacial bonding and enables 
experiments on the intrinsic thermal conductance of 
interfaces.



Measuring anisotropic thermal conductivity of metals

TDTR without transducer
(in-plane thermal diffusivity)

TDTR with transducer
(cross-plane thermal effusivity)

LthCs

hfCf

Top view
Side View
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Lth

Also:
beam-offset

Si

Al

bare Si

Feser and Cahill, Rev. Sci. Instrum. 84 (2013) 

Lth = [Λs/(πfCs)]1/2



Si becomes metallic at high pressure

Metallic



Thermal conductivity of metallic Si

Hohensee, Fellinger, Trinkle, Cahill, PRB (2015).

TDTR without transducer
(in-plane thermal diffusivity)

TDTR with transducer
(cross-plane thermal effusivity)



Use Wiedemann Franz Law to convert to electrical resistivity

0L Tρ =
Λ

Bloch-Grüneisen model



Summary for metallic Si and future directions

• Measurements of metallic samples do not require a 
transducer film if the thermal diffusivity is not too small.

• High pressure will aid in the search for a reversible thermal 
switch that changes from semiconductor (or semi-metal) to 
metal abruptly at a designed temperature.

• Anticipate that magneto-optic Kerr effect (MOKE) 
transducers could replace thermoreflectance as the 
ultrafast thermometer in pump probe experiments.  Less 
sensitive to dn/dT of the pressure medium; less sensitive to 
surface roughness.
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