

Thermal transport at high pressures

David Cahill, Greg Hohensee, Rich Wilson

Department of Materials Science and Engineering, Department of Physics, Materials Research Laboratory University of Illinois at Urbana-Champaign

Thermal Transport at High Pressure PI: David Cahill, U. Illinois

- Test theoretical models of thermal energy transport in materials and across interfaces.
- Pressure is used to systematically vary phonon and electron densities of states; and stiffness of interface bonding

Thermal Transport at High Pressure PI: David Cahill, U. Illinois

People and Recent Publications

Greg Hohensee, Physics Ph.D. May 2015. placement: Western Digital Corporation.

May-Ling Li, 2nd year, Materials Science and Engineering

- G. T. Hohensee, R. B. Wilson, and D. G. Cahill, "Thermal conductance of metal-diamond interfaces at high pressure," Nature Communications **6**, 6578 (2015).
- G. T. Hohensee, M. R. Fellinger, D. R. Trinkle and D. G. Cahill, "Thermal transport across high pressure semiconductor-metal transition in Si and SiGe," Phys. Rev. B **91**, 5104 (2015).

Overview

- Background thermal transport coefficients
- Methods time-domain thermoreflectance, diamond anvil cell
- Thermal conductance of metal-diamond interfaces at high pressures.
- Thermal conductivity measurements of metallic Si without a transducer layer.

How we think about thermal conductivity

Fourier's law defines a thermal conductivity:

$$\vec{J} = -\Lambda \vec{\nabla} T$$

 From Boltzmann transport equation to relaxation time approximation (RTA):

$$\Lambda_{ ext{RTA}} = rac{1}{3} \int C(\omega) v^2(\omega) au(\omega) d\omega$$
 $C(\omega) = ext{heat capacity of phonon mode}$
 $v(\omega) = ext{group velocity}$
 $au(\omega) = ext{thermal relaxation time}$
 $au(\omega) = ext{thermal relaxation time}$

- We measure the integral, Λ , to study the integrand, $\Lambda(\omega)$.
- Fit models for $\Lambda(\omega)$ to $\Lambda(T)$, $\Lambda(P)$ data.

How we think about interface thermal conductance

Discrete form of Fourier's Law:

$$\vec{J} \cdot \hat{z} = G\Delta T$$

Isotropic model:

$$G = \frac{1}{4} \int C(\omega)v(\omega)T(\omega)d\omega$$

 $C(\omega)$ = heat capacity of phonon mode

$$v(\omega) = \text{group velocity}$$

 $T(\omega) = \text{transmission coefficient}$

[weak bonding, non-equilibrium effects, ...]

- We measure the integral, G, to study the integrand $G(\omega)$.
- Fit models for $G(\omega)$ to G(T), G(P) data.

Time-domain thermoreflectance (TDTR)

 Pump-probe optical method for measuring heat transport at small length and time scales.

TDTR on diamond anvil cell (DAC) samples at high pressure

The question of thermal conductance between highly dissimilar materials

- Has roots in the Kapitza resistance problem for liquid He interfaces (1941-).
- Present incarnation, metals on diamond, Stoner and Maris in 1993.

Radiation limit: maximum two-phonon thermal conductance.

Lyeo and Cahill, Phys. Rev. B. 73 (2006)

New information from a new control: high pressure

Pressure tuning of mismatched phonon densities of states (DOS)

Xie et al., PRB **60** (1999) Menendez-Proupin, PRB **76** (2007)

Can explore wide stiffness range with different metals

Tambe et al., PRB **77** (2008) Menendez-Proupin et al., PRB **76** (2007) Greef & Graf, PRB **69** (2004)

Data for 4 metals on 1A and 2A diamond as a function of pressure up to 50 GPa

Hohensee, Wilson, Cahill, Nat. Comm. 6, 6578, (2015)

Observation A: no measurable dependence on defect density of the diamond anvils

- We have previously seen an anomalous dependence of interface conductance on dilute Ge additions to Si
- Attributed to non-equilibrium phonon distributions near the interface.
- Type 1A and 2A diamonds show the same thermal conductance
- Our type 1A diamonds have a thermal conductivity only 1/3 of pure diamond (700 W m⁻¹ K⁻¹) due to high nitrogen concentration (1500 ppm by our analysis)
- Null result suggests non-equilibrium phonon distributions are not important in these experiments.

Observation B: conductance of Pt/diamond and Au/diamond interfaces are similar

- Electron-phonon coupling within the metal contributes a series resistance Majumdar et al., APL (2004)
- Electron-phonon coupling from metal to diamond contributes a parallel conductance. Mahan, PRB (2009)

- Pt and Au have very different electron-phonon coupling strengths (Pt is larger by a factor of 20 by our measurements)
- Pt and Au have very different electronic heat capacities (Pt is larger by a factor of 11)
- Null result suggest electron-phonon coupling is not important

Observation C: pressure dependence of the data is much weaker than the pressure dependence of the radiation limit

- Excess conductance beyond the two-phonon, one phonon in diamond (d) and one phonon in metal (m) is attributed to three phonon interactions
- But which phonons?

 Data are consistent (pressure dependence and magnitude) with a "partial transmission" mechanism

$$d_1 + d_2 \iff m$$

Digression: Highest thermal conductance ever observed is for Al/MgO at high pressure, *G*>1 GW m⁻² K⁻¹

Stiffening of weak interfacial bonding was reversible in our prior work; at higher pressure, changes are not irreversible

Example of pressure driven chemistry at interfaces?

Hsieh et al, PRB (2011)

Hohensee, Ph.D. thesis, U. Illinois (2015)

Conclusions for interface conductance

- For dissimilar interfaces (metal/diamond), a partial transmission processes where two diamond phonons interact with one metal phonon provides a significant channel for heat transport
- Pressure strengthens weak interfacial bonding and enables experiments on the intrinsic thermal conductance of interfaces.

Measuring anisotropic thermal conductivity of metals

<u>TDTR with transducer</u> (cross-plane thermal effusivity)

Feser and Cahill, Rev. Sci. Instrum. 84 (2013)

Si becomes metallic at high pressure

Thermal conductivity of metallic Si

<u>TDTR with transducer</u> (cross-plane thermal effusivity)

<u>TDTR without transducer</u> (in-plane thermal diffusivity)

Hohensee, Fellinger, Trinkle, Cahill, PRB (2015).

Use Wiedemann Franz Law to convert to electrical resistivity

$$\rho = \frac{L_0 T}{\Lambda}$$

Bloch-Grüneisen model

Summary for metallic Si and future directions

- Measurements of metallic samples do not require a transducer film if the thermal diffusivity is not too small.
- High pressure will aid in the search for a reversible thermal switch that changes from semiconductor (or semi-metal) to metal abruptly at a designed temperature.
- Anticipate that magneto-optic Kerr effect (MOKE)
 transducers could replace thermoreflectance as the
 ultrafast thermometer in pump probe experiments. Less
 sensitive to dn/dT of the pressure medium; less sensitive to
 surface roughness.

