Ion beam analysis of materials for water purification: Partitioning of inorganic ions in FT30 reverse osmosis membranes

Xijing Zhang¹, **David G. Cahill**¹, Orlando Coronell² and Benito J. Mariñas².

¹Department of Materials Science and Engineering, ²Department of Civil and Environmental Engineering, ^{1, 2}The Center of Advanced Material for the Purification of Water with Systems, University of Illinois at Urbana-Champaign, Urbana, IL 61801 Motivation: limited microscopic understanding of transport in interfacially polymerized membranes

 Technology of polyamide membranes for purifying water has seen only minor incremental changes in >30 years.

Permeability is the product of solubility (i.e., partition coefficient K) and diffusion constant D.

- Goal is high rejection of salts and contaminants
 - Need high permeability to water (solvent) but low permeability to contaminants (solute)
- Steady-state transport measurements cannot distinguish between small partition coefficient K and small diffusivity

Use ion beam analysis (RBS) to measure K of salt ions

Conventional wisdom is K<<1; we find K≈5.

Sample preparation is critical

- Use high Z ions to increase sensitivity
 - Cs⁺ in CsCl
 - Br⁻ in KBr
 - WO₄²⁻ in Na₂WO₄
- Freeze-dry to remove water without disturbing the ion distribution
- Polysulfone is highly susceptible to ion beam damage

waterCAMPwS

 Scan RBS beam to minimize ion dose

RBS can determine both the K of the active layer and the porosity of the support layer

RBS can depth profile the porosity of the support layer

Atomic density of key element in solution: N_{i} For example, 0.05 M equals to 3×10^{19} cm⁻³

Atomic density in polymer: $N_{D} \approx 9 \times 10^{22} \text{ cm}^{-3}$

waterCAMPwS

Volume of pores V_o and volume of polymer V_p

Atomic percentage of the key element in polymer $x = V_o N_i / V_p N_p$

Porosity
$$\phi = V_o / (V_p + V_o) = \frac{x \overline{N_i}}{1 + x \frac{N_p}{N_i}}$$

 $N_{\rm s}$

Profile of porosity in the support layer

Summary

- Ion beam analysis has much to offer the field of "materials for water purification"
- Freeze-drying is a critical step in sample preparation but are there still issues of ion redistribution?
- Partition coefficient of salt ions in the active layer is surprisingly high, K≈6, much larger expected based on conventional wisdom.
- Greater depth resolution would be helpful since interfacially polymerized membranes are thin (<200 nm) and highly inhomogeneous.