

The story...

- Use high pressure (gem anvil cells) to modify vibrational densities of states and lifetimes
- Measure the change in thermal conductivity by time-domain thermoreflectance (TDTR)
- Test classic models for heat conduction by lattice vibrations
 - Minimum thermal conductivity model for disordered materials

PMMA polymer

Leibfried-Schlömann equation for perfect crystals
 water ice VII

Time domain thermoreflectance since 2003

- Improved optical design
- Normalization by out-ofphase signal eliminates artifacts, increases dynamic range and improves sensitivity
- Exact analytical model for Gaussian beams and arbitrary layered geometries
- One-laser/two-color approach tolerates diffuse scattering

Clone built at Fraunhofer Institute for Physical Measurement, Jan. 7-8 2008

psec acoustics and time-domain thermoreflectance

- Optical constants and reflectivity depend on strain and temperature
- Strain echoes give acoustic properties or film thickness
- Thermoreflectance dR/dT gives thermal properties

Analyze ratio V_{in}/V_{out} using an exact solution of the heat diffusion equation

Thermal Model:

- A. Laser spot size
- B. Thickness and C(P) of Al
- C. Interface conductance
- D. $\Lambda(P)$ of PMMA?

Windows software

author: Catalin Chiritescu, users.mrl.uiuc.edu/cahill/tcdata/tdtr_m.zip

TDTR_M -	[Program Sta	ntus]		
File Mod	lel Help			
Ready 0.62000E-03 0.68000E-03 0.98000E+07 0.80650E+08 4 0.10000E-04 2.0000 2.4200 0.10000E-06 0.10000E-02 0.10000 0.20000E-04 0.50000E-02 1.6000 0.10000 0.55000 1.6000 the arrival time of the pump beam is advanced Calculation started. PLEASE WAIT Calculation Finished				
Layer Information Thickness (nm) Thermal Conductivity (W/cm·K) Heat Capacity (J/cm^3-K)				
Layer 1	100 °	2 C	2.42	
Layer 2	1 C	1e-3 C	0.1 C	
Layer 3	200 €	5e-3 ∩	1.6 €	
Substrate	1.0e6 ©	0.55	1.6	
			Done	

TDTR: Flexible, convenient, and accurate

Costescu et al., PRB (2003)

Zhao et al., Materials Today (2005)

TDTR is all optical method: adaptable to "extreme" environments such as high pressure

Diamond anvil cell

Time-domain stimulated Brillouin scattering (picosecond interferometry)

Hsieh *et al.*, PRB (2009)

Model of the minimum thermal conductivity

- Einstein (1911): random walk of thermal energy
- Not good for crystals: Debye (1914)
- but does work for amorphous solids, Birch and Clark (1940); Kittel (1948)
- and crystals with strong atomic-scale disorder, Slack (1979); Cahill and Pohl (1988).

Test the applicability of the model for glassy polymers

- Polymers combine strong covalent bonds along the backbone (and within the side groups) and weak "non-bonded" interactions between chains.
- At high pressures, this strong inhomogeneity in bond strength is reduced.

C₁₁ data for PMMA from picosecond interferometry

Stevens et al., J. Chem. Phys. 127 104906 (2007)

Need thin (<20 nm) layers of PMMA

- PMMA thermal conductivity is smaller than the pressure medium (H₂O or Ar)
- For good sensitivity, we need most of the heat to flow through the polymer layer and into the SiC anvil
- Polymer "brushes" provide an elegant solution for controlling the polymer thickness

Nanoscale polymer brushes "grafted from" the SiC anvil

Thermal conductivity of PMMA polymer is independent of thickness and agrees well with the predicted scaling with $(C_{11})^{1/2}$

For good crystals, the theory is more complicated but should be correct if optical phonons are not too important

- Leibfried-Schlömann equation
 - acoustic phonons dominant heat carriers
 - three phonon anharmonic scattering between acoustic modes controls phonon mean-free-path

$$\Lambda = f \frac{V^{1/3} \omega_D^3}{\gamma^2 T}$$

$$V = \text{molecular volume}$$

$$\omega = \text{Debye frequency}$$

$$\gamma = \text{Grüneisen parameter}$$

Now test a crystal: water ice VII

- Experimental details are complicated
 - 1. coat thin mica substrate with Al
 - 2. measure mica with Ar pressure medium
 - 3. use published MD simulation of Ar thermal conductivity to analyze the data for mica
 - 4. measure again with H₂O as the pressure medium
 - 5. Use simulation to calculate changes in H₂O heat capacity per unit volume (result: essentially constant)
 - 6. Repeat a few times...

Good agreement with LS equation over wide range of compression

Summary

- Time domain thermoreflectance (TDTR) is a powerful method for measuring thermal conductivity under extreme conditions.
- Pressure dependence of PMMA polymer in good agreement with the model of the minimum thermal conductivity
 - Polymers do not resemble the atomic solids the model was originally intended for. Why is this model is so robust?
- Pressure dependence of ice VII in good agreement with Leibfried-Schlömann equation
 - Optical phonons are not an important factor for thermal conductivity of water ice either as carriers or scattering mechanisms. Will this be true for oxide minerals?