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Outline

• Thermal conductivity and interface thermal 
conductance.

• Advances in time-domain thermoreflectance.

• Amorphous limit to the thermal conductivity of 
materials.

• Ultralow thermal conductivity: beating the 
amorphous limit in nanolaminates and disordered 
layered crystals.



50 nm

Interfaces are critical at the nanoscale

• Low thermal conductivity in 
nanostructured materials

– improved thermoelectric 
energy conversion

– improved thermal barriers

• High thermal conductivity 
composites and suspensions



Interfaces are critical at the nanoscale

• High power density 
devices

– solid state lighting
– high speed and 

power electronics
– nanoscale sensors

Micrograph of tunneling magnetoresistive sensor
for 120 GB drives, M. Kautzky (Seagate)



Thermal conductivity and interface thermal conductance

• Thermal conductance (per unit area) G is a 
property of an interface

• Thermal conductivity Λ is a property of the 
continuum



Thermal conductivity and interface thermal conductance

• Both properties are difficult to understand and 
control because they are integral properties.

• For example, simplest case of thermal 
conductivity where resistive scattering 
dominates

Λ = 1/3∫ C(ω) v(ω) l(ω) dω

C(ω) = heat capacity of phonon mode

v(ω) = group velocity

l(ω) = mean-free-path



Brief introduction to thermoelectric materials

• Solid-state heat pump; thermal efficiency 
governed by the “figure of merit” ZT

2S TZT σ
=

Λ

S = Seebeck coefficient
σ = electrical conductivity
Λ = thermal conductivity

Lon Bell, Science (2008)



Brief introduction to thermoelectric materials

• … or write ZT in a more obviously 
dimensionless form…

Λ = Λlattice + Λelectronic

Λelectronic = LσT
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= ⎜ ⎟ + Λ Λ⎝ ⎠

Snyder, Caltech, 
http://thermoelectrics.caltech.edu



Carbon nanotubes

• Evidence for the highest thermal conductivity 
any material (higher conductivity than 
diamond)

Yu et al. (2005)

Maruyama (2007)



Can we make use of this?

• Much work world-wide:

– thermal interface 
materials

– so-called "nanofluids" 
(suspensions in 
liquids)

– polymer composites 
and coatings

Fischer (2007)

Lehman (2005)



Critical aspect ratio for a fiber composite

• Isotropic fiber composite with high conductivity 
fibers (and infinite interface conductance)

• But this conductivity if obtained only if the 
aspect ratio of the fiber is high

Critical aspect ratio of a fiber composite



Time domain thermoreflectance since 2003

• Improved optical design
• Normalization by out-of-

phase signal eliminates 
artifacts, increases dynamic 
range and improves 
sensitivity

• Exact analytical model for 
Gaussian beams and 
arbitrary layered geometries

• One-laser/two-color 
approach tolerates diffuse 
scattering

Clone built at Fraunhofer Institute for 
Physical Measurement, Jan. 7-8 2008



psec acoustics and
time-domain thermoreflectance

• Optical constants and 
reflectivity depend on 
strain and temperature

• Strain echoes give 
acoustic properties or 
film thickness

• Thermoreflectance gives 
thermal properties



Time-domain Thermoreflectance (TDTR) 
data for  TiN/SiO2/Si

• reflectivity of a metal 
depends on 
temperature

• one free parameter: 
the “effective”
thermal conductivity 
of the thermally 
grown SiO2 layer 
(interfaces not 
modeled separately)

SiO2

TiN

Si



Windows software 

author: Catalin Chiritescu, 
users.mrl.uiuc.edu/cahill/tcdata/tdtr_m.zip



TDTR: Flexible, convenient, and accurate

• ...with 3 micron resolution…



Thermal conductivity map of a human tooth 

www.enchantedlearning.com/ Distance from the DEJ (μm)
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Nanotubes in surfactant in water: Transient absorption

• Optical absorption 
depends on 
temperature of the 
nanotube

• Assume heat 
capacity is 
comparable to 
graphite

• Cooling rate (RC 
time constant) 
gives interface 
conductance

G = 12 MW m-2 K-1

Nanotubes in surfactant in water



Critical aspect ratio for a fiber composite

• Isotropic fiber composite with high conductivity 
fibers (and infinite interface conductance)

• But this conductivity if obtained only if the 
aspect ratio of the fiber is high

Critical aspect ratio of a fiber composite

• Troubling question: Did we measure the 
relevant value of the conductance? 

"heat capacity G" vs. "heat conduction G"



nanotube/alkane

W/Al2O3 

Au/water

PMMA/Al2O3

Interface thermal conductance: Factor of 60 range at 
room temperature

L = Λ/G
Λ = 1 W m-1 K-1



Can we beat the amorphous limit of the 
thermal conductivity Λmin with interfaces?

• Einstein (1911): random walk of thermal energy

• Not good for crystals: Debye (1914)

• but does work for amorphous solids, Birch and 
Clark (1940); Kittel (1948)

• and crystals with strong atomic-scale disorder, 
Slack (1979); Cahill and Pohl (1988).



Einstein (1911)

• coupled the Einstein 
oscillators to 26 
neighbors 

• heat transport as a 
random walk of 
thermal energy 
between atoms; time 
scale of ½ vibrational 
period

• did not realize waves 
(phonons) are  the 
normal modes of a 
crystal



Works well for homogeneous 
disordered materials

disordered crystal

amorphous



50 nm

Ultralow thermal conductivity in W/Al2O3
nanolaminates (Costescu, 2004)

• Thermal conductance of interfaces between 
dissimilar materials can produce thermal 
conductivities below the amorphous limit.



W/Al2O3 nanolaminates

W/Al2O3 nanolaminates

• ultra-low conductivity 
in nanoscale 
metal/ceramic 
multilayers

• data close to 
theoretical prediction 
of the diffuse-
mismatch model 
(DMM) times layer 
spacing



Layered disordered crystals: WSe2 by 
“modulated elemental reactants”

• Deposit W and Se 
layers at room 
temperature on Si 
substrates

• Anneal to remove 
excess Se and 
improve crystallinity

• Characterize by RBS, 
x-ray diffraction (lab 
sources and Advanced 
Photon Source) and 
TEM



Cross-sectional TEM of 60 nm thick WSe2

Seongwon Kim and Jian Min Zuo



Thermal conductivity of WSe2

• 60 nm film has the lowest 
thermal conductivity ever 
observed in a fully dense 
solid. Only twice the thermal 
conductivity of air.

• A factor of 6 less than the 
calculated amorphous limit 
for this material.



Ion irradiation of WSe2

• Heavy ion irradiation 
(1 MeV Kr+) of 24 nm 
WSe2 film.

• Novel behavior: ion 
damage causes the 
thermal conductivity 
to increase.

MD simulation of 1 MeV 
Kr impact on Au



Digression: ion bombardment of a 
superlattice (with Y. Cao and D. Jena)

• 2.3 MeV Ar ion 
irradiation of GaN and 
(AlN)4 nm-(GaN)5 nm

• Lines are Debye-
Callaway models 
assuming phonon 
Rayleigh scattering 
scales linearly with ion 
dose.

• Fit gives Γ = 1 at an ion 
dose of 1014 cm-2
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Molecular dynamics simulation

• MD work by Bodapati 
and Keblinski (RPI)

• Original LJ model of 
WSe2 gives 0.06 W/m-
K independent of 
length-scale

• Conclusion: physics is 
general, not specific to 
some detail of the 
WSe2 bonding or 
microstructure



Conclusions from theoretical work 
(Hu and Keblinski, unpublished)

• Analysis of the participation ratio: phonon 
localization is not significant.

• Analysis of mode polarization: incoherent grain 
boundaries create diffusive but non-propagating 
vibrational modes.  (stacking faults are not 
sufficient)

• Key to ultralow thermal conductivity is disorder in 
combination with anisotropy, i.e., an “anisotropic 
glass”.

• Interface resistance between 2D crystalline 
sheets?  Lowering of the effective density of 
states for modes diffusing perpendicular to the 
sheets?



Back to experiment: Can we lower the 
conductivity even further?

• Synthesize misfit 
layered compounds by 
elemental reactants 
method (Johnson and 
co-workers) 
– WSe2/PbTe
– MoSe2/PbTe

• Interface density does 
not matter. Conductivity 
determined by 
composition not 
interface density.
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Contrast with typical behavior of a 
superlattice (with Y. Cao and D. Jena)

(AlN)4 nm-(GaN)h
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Conclusions

• Difficult to take advantage of superlative properties of carbon 
nanotubes because of "thermally weak" interfaces.

• Can beat the amorphous limit to the thermal conductivity 
with high densities of interfaces.

• Incredibly low thermal conductivity (far below the amorphous 
limit) in the disordered, layered crystal WSe2. 

– Combination of disorder (random stacking of sheets) and 
anisotropy (large differences in vibrations within and 
across the sheets) appears to be the key

– Can we reproduce this physics in materials with good 
electrical conductivity for thermoelectric energy 
conversion?  

– Can we reproduce this physics in refractory oxides for 
thermal barriers?
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