Q9. Window layers A CuInSe₂ n-p junction solar cell has a 0.1 μm heavily doped n-type emitter layer and a 4 μm lightly doped p-type base. Use the information below to estimate the relative increase in quantum efficiency at 600 nm when the CuInSe₂ emitter layer is replaced with CdS. Explain your reasoning and state clearly any assumptions which you make. | Absorption coefficient of CuInSe ₂ at 600 nm (α) | $1.5 \times 10^7 \text{ m}^{-1}$ | |--|----------------------------------| | Band gap of CdS | $2.4~{ m eV}$ | | Diffusion length of holes in n^+ -type CuInSe ₂ (L_p) | $0.01~\mu\mathrm{m}$ | | Diffusion length of electrons in p -type CuInSe ₂ (L_n) | $2.0~\mu\mathrm{m}$ | ## Q10. Electric field in an a-Si p-i-n cell - (a) An amorphous silicon p-i-n solar cell has a p type background doping of 2.0×10^{21} m⁻³ in the intrinsic region and dielectric constant of $\varepsilon = 1.0 \times 10^{-10}$ F m⁻¹. If the cell has a built in bias $V_{\rm bi}$ of 0.9 V, calculate the thickness of the depletion layer in the intrinsic material at zero applied bias, treating the intrinsic region as the p side of a p-n junction. State any approximations which you make. - (b) Would your answer to (a) be a suitable value for the width of the i-region of the solar cell? Give a reason for your answer. Estimate a better value for the i region thickness, stating any assumptions made.