XRD 1

Session 1: 56 pts

- 1. Significance of Start angle = 20° 1 pt
- 2. Standard deviation analysis (for Cu only) 3 pts
- 3. Calculation of Structure factors for HCP, Diamond and ZnS crystal structures **12 pts (4 pts for each material)**
- 3. Table listing allowed diffractions (hkl), d, $2\theta_{calc}$, $2\theta_{expt}$ and $2\theta_{error}$ for Cu, Mo, Ti, Si and ZnS **25** pts (5 pts for each material)
- 4. Intensity vs 2θ plot on Matlab 15 pts (3 pts for each material)

Session 2: 44 pts

- 6. Lattice constant error analysis:
 - a) Calculation of lattice const corresponding to the 4 tallest peaks for Cu, Mo and Si 6 pts (2 pt for each cubic material)
 - b) a vs 2θ plot at different scan speeds and calculation of uncertainty in a for Cu 3 pts
 - c) Discussion on the relationship between scan speed and uncertainty in a 4 pts
 - d) Determination of lattice constant by extrapolation of a vs cos²θ/sinθ plot for Cu, Mo and Si using Matlab 6 pts (2 pt for each cubic material)
 - e) Discussion on the relative magnitudes of systematic and statistical errors and their implications **4 pts**
- 7. Characterization of Cu- K_{α} doublet
 - a) Determination of λ_1/λ_2 experiments and comparison with theoretical ratio **4 pts**
 - b) Explanation of the presence of doublet peaks 3 pts
 - c) Estimation of intensity ratio of the two Cu- K_{α} lines 3 pts
- 8. Structure factor analysis
 - a) Explanation of differences between Cu, Si and ZnS spectra 6 pts
 - b) Estimation of $\frac{\left|f_A + f_B\right|^2}{\left|f_A f_B\right|^2}$ for ZnS and calculation of $\frac{f_A}{f_B}$ 5 pts