Raman Spectroscopy

Session 1: 40 pts

1. CO_{2} and $\mathrm{H}_{2} \mathrm{O}$
a) Sketching of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ molecules 2 pts (1 pt for each molecule)
b) Identification of the $\mathrm{O}-\mathrm{H}$ and $\mathrm{C}=\mathrm{O}$ stretching modes 3 pts (1.5 pt for each bond)
c) Analysis of symmetric and antisymmetric modes of the $\mathrm{O}-\mathrm{H}$ and $\mathrm{C}=\mathrm{O}$ vibrations 5 pts (2.5 pts for each bond)
d) Identification of natural frequency of oscillation of $\mathrm{O}-\mathrm{H}$ and $\mathrm{C}=\mathrm{O}$ bonds $\mathbf{3} \mathbf{~ p t s} \mathbf{(1 . 5} \mathbf{~ p t ~ f o r ~}$ each bond)
e) Discussion on the difference in the number of degenerate angular vibration modes between CO_{2} and $\mathrm{H}_{2} \mathrm{O} 2$ pts
2. CH_{4}
a) Identification of each mode for $\mathrm{CH}_{4} \mathbf{3} \mathbf{~ p t s}$
b) Discussion on degeneracy of each mode 2 pts
c) Derivation of kinetic and potential energy 4 pts
d) Estimate the spring constant of the C-H bond. 4 pts
3. O-H stretching mode
a) Identification of the O-H stretching mode in $\mathrm{CH}_{3} \mathrm{OH} 2$ pts
b) Comparison with this mode with that in $\mathrm{H}_{2} \mathrm{O} 2$ pts
c) Identification of $\mathrm{O}-\mathrm{H}$ stretching mode in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and $\mathrm{CH}_{3}-\mathrm{CHOH}-\mathrm{CH}_{3} \mathbf{2}$ pts
4. Isopropanol $\left(\mathrm{CH}_{3}-\mathrm{CHOH}-\mathrm{CH}_{3}\right)$ and acetone $\left(\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{CH}_{3}\right.$. $)$
a) Identification of $\mathrm{C}-\mathrm{H}$ modes $\mathbf{2} \mathbf{p t}$
b) Identification of C-C $2 \mathbf{p t}$
c) Comparison of frequencies of the $\mathrm{C}=\mathrm{O}$ mode in acetone and $\mathrm{CO}_{2} .2 \mathbf{p t}$

Session 2: 60 pts

1. Acquisition of signal from background and discussion on its effects $\mathbf{3} \mathbf{p t s}$
2. Acquisition of signals from glass slide and glass vial and discussion on the differences between the two 4 pts
3. Discussion on the effect of acquisition time and the number of scans on the signal/noise ratio 2 pts
4. Discussion on the calibration of the spectrograph $\mathbf{4} \mathbf{p t s}$
5. Acquisition of signals, processing of raw files using Matlab and graph-plotting for Isopropanol, Chloroform, Acetone, Ethanol, SiC and ZnS 30 pts (5 pts for each material)
6. Identification of the wave numbers corresponding to specific vibrational modes in each organic material $\mathbf{8} \mathbf{p t s}$ (2 pt for each)
7. Identification of phases present in ZnS and $\operatorname{SiC} \mathbf{4} \mathbf{~ p t s}$ ($\mathbf{2} \mathbf{~ p t ~ f o r ~ e a c h) ~}$
8. Acquisition of Raman spectrum for the unknown material and subsequent data-analysis $\mathbf{5} \mathbf{~ p t s}$
