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Outline

• Introduction to time-domain 
thermoreflectance (TDTR)

• Pros and cons: 3ω versus TDTR

• Digression: what limits 3ω accuracy and • Digression: what limits 3ω accuracy and 
precision?

• TDTR advantages for high thermal • TDTR advantages for high thermal 
conductivity thin layers, spatial resolution, and 
semiconductors.

• Additional issues: Frequency dependent 
thermal conductivity of semiconductor alloys.



Time-domain thermoreflectance



Time-domain thermoreflectance

Clone built at Fraunhofer Institute for 
Physical Measurement, Jan. 7-8 2008



psec acoustics and
time-domain thermoreflectance

• Optical constants and 
reflectivity depend on 
strain and temperature

• Strain echoes give 
acoustic properties or acoustic properties or 
film thickness

• Thermoreflectance gives 
th l tithermal properties



Schmidt et al., RSI 2008 

• Heat supplied by 
modulated pump p p
beam (fundamental 
Fourier component 
at frequency f)at frequency f)

• Evolution of surface • Evolution of surface 
temperature

time



Schmidt et al., RSI 2008 

• Instantaneous 
temperatures measured 
by time-delayed probe

• Probe signal as 
measured by rf lock-in measured by rf lock in 
amplifier



Analytical solution to 3D heat flow
in an infinite half-space, Cahill, RSI (2004)

• spherical thermal wave

• Hankel transform of 
surface temperature

• Multiply by transform 
of Gaussian heat 
source and take source and take 
inverse transform

• Gaussian-weighted • Gaussian-weighted 
surface temperature
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Iterative solution for layered geometries



Frequency domain solution for 3ω and 
TDTR are essentially the same

• “rectangular” heat • Gaussian heat source 

3ω TDTR
• rectangular  heat 

source and temperature 
averaging.

• Gaussian heat source 
and temperature 
averaging.

• One-dimensional Fourier 
transform.

• Radial symmetric Hankel
transform.

• “known” quantities in 
the analysis are Joule 
heating and dR/dT

• “known” quantity in the 
analysis is the heat 
capacity per unit area of heating and dR/dT

calibration.
capacity per unit area of 
the metal film 
transducer.



TDTR signal analysis for the lock-in 
signal as a function of delay time t

• In-phase and out-of-phase signals by series of sum and 
difference over sidebands

• out-of-phase signal is dominated by the m=0 term • out of phase signal is dominated by the m=0 term 
(frequency response at modulation frequency f)



Windows software 

author: Catalin Chiritescu  author: Catalin Chiritescu, 
users.mrl.uiuc.edu/cahill/tcdata/tdtr_m.zip



Time-domain Thermoreflectance (TDTR) 
data for  TiN/SiO2/Si

SiO2

TiN

Si

• reflectivity of a metal 
depends on 
temperaturetemperature

• one free parameter: 
the “effective” 
thermal conductivity 
of the thermally 
grown SiO2 layer 2 
(interfaces not 
modeled separately)

Costescu et al., PRB (2003)



TDTR: early validation experiments

Costescu et al., PRB (2003) Zhao et al., Materials Today (2005)



Each have advantages and disadvantages

3

• High accuracy, particularly for bulk materials 
and low thermal conductivity dielectric films

3ω

and low thermal conductivity dielectric films

• Accuracy is reduced for semiconducting thin 
films and high thermal conductivity layersfilms and high thermal conductivity layers

– Need electrical insulation: introduces an 
additional thermal resistance.additional thermal resistance.

– Cannot separate the metal/film interface 
thermal conductance from the thermal 

dconductivity

• Wide temperature range (30 < T< 1000 K)

– But very high temperatures are not usually 
accessible for semiconductors



Each have advantages and disadvantages

TDTR
• Accuracy is typically limited to several percent 

due to uncertainties in the many experimental 

TDTR

y p
parameters

– Metal film thickness
– Heat capacity of the sample if film is thick

• But many experimental advantages

– No need for electrical insulation
– Can separate the metal/film interface thermal 

conductance from the thermal conductivityconductance from the thermal conductivity
– High spatial resolution
– Only need optical access: high pressures, 

high magnetic fields, high temperatures



Digression: what limits the accuracy of 3ω data?

• 1990’s: approximations made for low thermal 
conductivity film on high thermal conductivity conductivity film on high thermal conductivity 
substrate and film thickness<heater-width

– No need for those approximations now. pp
Feldman and co-workers (1999), and others 
shortly after, pointed out that a transfer 
matrix approach for layered geometries is matrix approach for layered geometries is 
equally applicable for linear and radial heat 
flow. 

– DOS program: multi3w.exe available at 
users.mrl.uiuc.edu/cahill/tcdata.html
Anisotropy is easy to add– Anisotropy is easy to add



Digression: what limits the accuracy of 3ω data?

• Contributions from the heater line.

– Not explicitly included in the heat flux 
boundary conditions of the solutions

– Heat capacity matters at very high Heat capacity matters at very high 
frequencies, see, for example, Tong et al.  
RSI (2006).

– Lateral heat flow in heater line was 
considered recently by Gurrum et al., JAP 
(2008).(2008).



Digression: what limits the accuracy of 3ω data?

• In my experience, the dR/dT calibration is the 
biggest issuebiggest issue.

– use physics to fix the calibration

Bloch-Grüneisen resistivity of a metal



Calibration of Au thermometer line

• Materials with large • Materials with large 
coefficient of thermal 
expansion create an 
i t ti  blinteresting problem

– during calibration of 
R(T) substrate strain R(T) substrate strain 
is homogeneous

– but during 3ω
measurement, ac 
strain field is complex 
so the determination so the determination 
of dR/dT is not really 
correct.



High thermal expansion coefficients

• Add terms to account for effect of strain on 
the Bloch-Grüneisen resistivity and the 
residual resistivity.  residual resistivity.  

f /• CTE of PMMA is ≈50 ppm/K

• CTE of PbTe is ≈20 ppm/K



Highest precision measurements at Illinois 
using 3ω: polymer nanocomposites

• PMMA mixed with 60 nm γ-Al2O3 nanoparticles

nanocompositenanocomposite

PMMA

Putnam et al., JAP (2003)



Something not possible with 3ω: TDTR data 
for isotopically pure Si epitaxial layer on Sip y p p y

• Two free fitting parameters

– thermal conductivity, 165 W/m-K
– Al/Si interface conductance, 185 MW/m2-K

23
Cahill et al., PRB (2004)



Thermal conductivity map of a human tooth 
3
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High throughput data using diffusion couples



Thermoreflectance raw data at t=100 ps

• fix delay time and 
vary modulation SiOvary modulation 
frequency f.  

• Change in Vin doesn’t 

a-SiO2

InGaAs  InGaPChange in Vin doesn t 
depend on f.  Vout
mostly depends on 
(fΛC)-1/2

InP, GaAs

InGaAs, InGaP

(fΛC) 1/2

• semiconductor alloys 
show deviation from Sishow deviation from 
fit using a single 
value of the thermal 
conductivity

Si

conductivity

Koh and Cahill PRB (2007)



Same data but fit Λ at each frequency f

Frequency dependent 
thermal conductivity 
of semiconductor of semiconductor 
alloys

Koh and Cahill PRB (2007)



How can thermal conductivity be frequency 
dependent at only a few MHz?

• 2πfτ << 1 for phonons that carry significant 
heat.  For dominant phonons,  τ ~50 ps, 
and 2 f    10-3and 2πfτ  ~ 10-3.

• But the thermal penetration depth d is 
not small compared to the dominant not small compared to the dominant 
mean-free-path ldom.

• Ansatz: phonons with l(ω) > d do not p ( )
contribute to the heat transport in this 
experiment.

T  l  if th  “ i l l ti ti  • True only if the “single-relaxation-time 
approximate” fails strongly.  For single 
relaxation time τ,  l<<d because fτ << 1. 



For non-equilibrium, add effusivity 
instead of conductivity

• Consider a "two-fluid" model with

Λ ≈ ΛΛ1 ≈ Λ2

C1 >> C2

• Equilibrium,

(ΛC)1/2 = [(Λ1 + Λ2)(C1+C2)]1/2(ΛC)  [(Λ1  Λ2)(C1+C2)]

• Out-of-equilibrium,

(ΛC)1/2 = (Λ1C1)1/2 + (Λ2 C2)1/2

≈ (Λ1C1)1/2 (Λ1C1)



f<1 MHz frequency TDTR agrees with 3ω

Koh et al., JAP (2009)        



Summary and Conclusions

• Usually, 3ω has higher accuracy because Joule 
heating and dR/dT calibration are electrical 
measurements and geometry is precisely known.measurements and geometry is precisely known.

• For semiconducting thin films, because of extra 
thermal resistance of electrical isolation layers, thermal resistance of electrical isolation layers, 
accuracy of TDTR is comparable.

• TDTR has tremendous advantages in experimental g p
convenience—once the high initial cost and set-up 
has been overcome.


